You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A compelling study for readers interested in the environmental history of Latin America, this book sheds light on the complex history of the Ecuadorian rainforest and the impact oil development. This title is part of the Flip it Open Programme and may also be available Open Access. Check our website Cambridge Core for details.
Statistical mechanics is the application of probability theory, which includes mathematical tools for dealing with large populations, to the field of mechanics, which is concerned with the motion of particles or objects when subjected to a force. It provides a framework for relating the microscopic properties of individual atoms and molecules to the macroscopic or bulk properties of materials that can be observed in everyday life, therefore explaining thermodynamics as a natural result of statistics and mechanics (classical and quantum) at the microscopic level. In particular, it can be used to calculate the thermodynamic properties of bulk materials from the spectroscopic data of individual molecules. This ability to make macroscopic predictions based on microscopic properties is the main asset of statistical mechanics over thermodynamics. Both theories are governed by the second law of thermodynamics through the medium of entropy.
This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described wi...
This textbook presents a modern account of turbulence, one of the greatest challenges in physics. The state-of-the-art is put into historical perspective five centuries after the first studies of Leonardo and half a century after the first attempt by A.N. Kolmogorov to predict the properties of flow at very high Reynolds numbers. Such "fully developed turbulence" is ubiquitous in both cosmical and natural environments, in engineering applications and in everyday life. First, a qualitative introduction is given to bring out the need for a probabilistic description of what is in essence a deterministic system. Kolmogorov's 1941 theory is presented in a novel fashion with emphasis on symmetries...
Over the years, many leading European graduate schools in the field of astrophysical and space plasmas have operated within the framework of the research network, "Theory, Observations, and Simulations in Turbulence in Space Plasmas." This text is a set of lectures and tutorial reviews culled from the relevant work of all those schools. It emphasizes applications on solar coronae, solar flares, and the solar wind. In bridging the gap between standard textbook material and state-of-the-art research, this text offers a broad flavor to postgraduate and postdoctoral students just coming to the field. And because of its unique mix, it will also be useful to lecturers looking for advanced teaching material for their seminars and courses.