You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A wide range of researchers are currently investigating different properties and applications for copper-containing proteins. Biochemists researching metal metabolism in organisms ranging from bacteria to plants to animals are working in a completely different area of discovery than scientists studying the transportation and regulation of minerals and small molecule nutrients. They are both working with copper-containing proteins, but in very different ways and with differing anticipated outcomes.
The role played by structural proteomics in the first decade of the 21st century is equivalent to that played by the Human Genome Project in the last decade of the 20th century. The development of high-throughput technologies that permit the solution of hundreds of 3D structures of individual proteins, protein-protein complexes and protein-drug complexes, just by one laboratory in a single year, will provide a knowledge base which will change the face of structural biology. This will have an immediate influence on medicinal chemistry and molecular pharmacology, as well as an increasing impact on such disciplines as neurobiology, developmental biology, immunology and molecular medicine.This b...
The first of a two volume set, Volume 12 provides a long-awaited compilation of NMR theory to paramagnetic molecules. International experts report the latest developments in NMR methodology as applied to strongly relaxed and shifted resonances, detail the theoretical aspects of paramagnetic shift and relaxation, and discuss the interpretive bases of these molecular properties in relation to the structure and function of various paramagnetic molecules.
Part A.: Overviews of biological inorganic chemistry : 1. Bioinorganic chemistry and the biogeochemical cycles -- 2. Metal ions and proteins: binding, stability, and folding -- 3. Special cofactors and metal clusters -- 4. Transport and storage of metal ions in biology -- 5. Biominerals and biomineralization -- 6. Metals in medicine. -- Part B.: Metal ion containing biological systems : 1. Metal ion transport and storage -- 2. Hydrolytic chemistry -- 3. Electron transfer, respiration, and photosynthesis -- 4. Oxygen metabolism -- 5. Hydrogen, carbon, and sulfur metabolism -- 6. Metalloenzymes with radical intermediates -- 7. Metal ion receptors and signaling. -- Cell biology, biochemistry, and evolution: Tutorial I. -- Fundamentals of coordination chemistry: Tutorial II.
Since A. Kowalsky's first report of the spectrum of cytochrome c in 1965, interest in the detection, assignment and interpretation of paramagnetic molecules has surged, especially in the last decade. Two classes of systems have played a key role in the development of the field: heme proteins and iron-sulfur proteins. These two systems are unique in many respects, one of which is that they contain well-defined chromophores, each of which can be studied in detail outside the protein matrix. They are the most successfully studied macromolecules, and the first eight and last six of the seventeen contributions to this book deal with heme and/or iron-sulfur proteins. The middle three chapters survey the progress on, and significant promise of, more difficult systems which do not possess a chromophore, but which have nevertheless yielded remarkable insights into their structure.
Approx.284 pages
Biomedical EPR – Part B focuses on applications of EPR techniques and instrumentation, with applications to dynamics. The book celebrates the 70th birthday of Prof. James S. Hyde, Medical College of Wisconsin, and his contributions to this field. Chapters are written to provide introductory material for new-comers to the field that lead into up-to-date reviews that provide perspective on the wide range of questions that can be addressed by EPR. Key Features: EPR Techniques including Saturation Recovery, ENDOR, ELDOR, and Saturation Transfer Instrumentation Innovations including Loop Gap Resonators, Rapid Mixing, and Time Locked Sub-Sampling Motion in Biological Membranes Applications to Structure Determination in Proteins Discussion of Trends in EPR Technology and Prognosis for the Future
The field of Very High Frequency EPR (VHF EPR) or sometimes called Very High Field EPR (conveniently, also abbreviated as VHF EPR) has blossomed during the past decade, especially after the original pioneering work of Ya. S. Lebedev and his group at the Institute of Chemical Physics, Russian Academy of Sciences in Moscow. Although Lebedev suffered heavily under the economic constraints of the communist Soviet Union and then succumbed to cancer at the peak of his scientific career, his groundbreaking work from the 1970's is still considered today to be the 'gold standard' by researchers practicing EPR at high magnetic fields. A stimulus for the production of this book is the legacy of Yakov L...
Scientists in such fields as mathematics, physics, chemistry, biochemistry, biology, and medicine are currently involved in investigations of porphyrins and their numerous analogues and derivatives. Porphyrins are being used as platforms for the study of theoretical principles, as catalysts, as drugs, as electronic devices, and as spectroscopic probes in biology and medicine. The need for an up-to-date and authoritative treatise on the porphyrin system has met with universal acclaim amongst scientists and investigators.