You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Ideas of Quantum Chemistry shows how quantum mechanics is applied to chemistry to give it a theoretical foundation. The structure of the book (a TREE-form) emphasizes the logical relationships between various topics, facts and methods. It shows the reader which parts of the text are needed for understanding specific aspects of the subject matter. Interspersed throughout the text are short biographies of key scientists and their contributions to the development of the field.Ideas of Quantum Chemistry has both textbook and reference work aspects. Like a textbook, the material is organized into digestable sections with each chapter following the same structure. It answers frequently asked quest...
"Practical Aspects of Computational Chemistry" presents contributions on a range of aspects of Computational Chemistry applied to a variety of research fields. The chapters focus on recent theoretical developments which have been used to investigate structures and properties of large systems with minimal computational resources. Studies include those in the gas phase, various solvents, various aspects of computational multiscale modeling, Monte Carlo simulations, chirality, the multiple minima problem for protein folding, the nature of binding in different species and dihydrogen bonds, carbon nanotubes and hydrogen storage, adsorption and decomposition of organophosphorus compounds, X-ray crystallography, proton transfer, structure-activity relationships, a description of the REACH programs of the European Union for chemical regulatory purposes, reactions of nucleic acid bases with endogenous and exogenous reactive oxygen species and different aspects of nucleic acid bases, base pairs and base tetrads.
This handbook is a guide to current methods of computational chemistry, explaining their limitations and advantages and providing examples of their applications. The first part outlines methods, the balance of volumes present numerous important applications.
In 1995 the Handbook of Global Optimization (first volume), edited by R. Horst, and P.M. Pardalos, was published. This second volume of the Handbook of Global Optimization is comprised of chapters dealing with modern approaches to global optimization, including different types of heuristics. Topics covered in the handbook include various metaheuristics, such as simulated annealing, genetic algorithms, neural networks, taboo search, shake-and-bake methods, and deformation methods. In addition, the book contains chapters on new exact stochastic and deterministic approaches to continuous and mixed-integer global optimization, such as stochastic adaptive search, two-phase methods, branch-and-bound methods with new relaxation and branching strategies, algorithms based on local optimization, and dynamical search. Finally, the book contains chapters on experimental analysis of algorithms and software, test problems, and applications.
This book is intended for those who are interested in understanding the electronic structure and properties of polymers. The scope of the book is to provide the non-specialist reader with a comprehensive and unified description: (i) of quantum mechanical methods, mainly originating from quantum chemistry, to calculate the electronic properties of polymers, (ii) of their use for interpreting and predicting results in fields where the electronic structure is playing an important role, like the electrical conductivity and the non linear optical properties of conjugated polymers.It will also serve as a reference book to lecture graduate students on the electronic structure of polymers or more generally of quasi-one dimensional materials. In this framework, it is worth stressing that the quantum theory of polymers bridges the gap between chemistry and physics. Since no book of this kind involving a strong interaction between theoretical and experimental concepts is available at the moment, it will also meet a need for a timely monograph in a field of important and fast growing interest.
"Accessibly written in an engaging style, this book examines classic popular stories in the history of science. Some of the myths discussed include Franklin's Kite, Newton's Apple, and Thomson's plum pudding model of the atom. Martn̕ez successfully holds readers' attention by relying on rich documentation from primary sources to debunk speculations that have become reified over time. He argues that although scientists have disagreed with one another, the disagreements have been productive. Features includes extensive primary source documentation and detailed explanations of how to compare contradictory sources in order to determine which accounts are truly valid"-- Provided by publisher.