You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The aim of this monograph is to outline the physics of image formation, electron–specimen interactions, and image interpretation in transmission el- tron microscopy. Since the last edition, transmission electron microscopy has undergone a rapid evolution. The introduction of monochromators and - proved energy ?lters has allowed electron energy-loss spectra with an energy resolution down to about 0.1 eV to be obtained, and aberration correctors are now available that push the point-to-point resolution limit down below 0.1 nm. After the untimely death of Ludwig Reimer, Dr. Koelsch from Springer- Verlag asked me if I would be willing to prepare a new edition of the book. As it had served me a...
The aim of this book is to outline the physics of image formation, electron specimen interactions and image interpretation in transmission electron mic roscopy. The book evolved from lectures delivered at the University of Munster and is a revised version of the first part of my earlier book Elek tronenmikroskopische Untersuchungs- und Priiparationsmethoden, omitting the part which describes specimen-preparation methods. In the introductory chapter, the different types of electron microscope are compared, the various electron-specimen interactions and their applications are summarized and the most important aspects of high-resolution, analytical and high-voltage electron microscopy are discu...
Scanning Electron Microscopy provides a description of the physics of electron-probe formation and of electron-specimen interactions. The different imaging and analytical modes using secondary and backscattered electrons, electron-beam-induced currents, X-ray and Auger electrons, electron channelling effects, and cathodoluminescence are discussed to evaluate specific contrasts and to obtain quantitative information.
While most textbooks about scanning electron microscopy (SEM) cover the high-voltage range from 5-50 keV, this volume considers the special problems in low-voltage SEM and summarizes the differences between LVSEM and conventional SEM. Chapters cover the influence of lens aberrations and design on electron-probe formation; the effect of elastic and inelastic scattering processes on electron diffusion and electron range; charging and radiation damage effects; the dependence of SE yield and the backscattering coefficient on electron energy, surface tilt, and material as well as the angular and energy distributions; and types of image contrast and the differences between LVSEM and conventional SEM modes due to the influence of electron-specimen interactions.
The aim of this book is to outline the physics of image formation, electron specimen interactions, imaging modes, the interpretation of micrographs and the use of quantitative modes "in scanning electron microscopy (SEM). lt forms a counterpart to Transmission Electron Microscopy (Vol. 36 of this Springer Series in Optical Sciences) . The book evolved from lectures delivered at the University of MĂĽnster and from a German text entitled Raster-Elektronenmikroskopie (Springer-Verlag), published in collaboration with my colleague Gerhard Pfefferkorn. In the introductory chapter, the principles of the SEM and of electron specimen interactions are described, the most important imaging modes and their associated contrast are summarized, and general aspects of eiemental analysis by x-ray and Auger electron emission are discussed. The electron gun and electron optics are discussed in Chap. 2 in order to show how an electron probe of small diameter can be formed, how the elec tron beam can be blanked at high frequencies for time-resolving exper iments and what problems have tobe taken into account when focusing.
This book/CD package provides a reference on electron energy loss spectrometry (EELS) with the transmission electron microscope, an established technique for chemical and structural analysis of thin specimens in a transmission electron microscope. Describing the issues of instrumentation, data acquisition, and data analysis, the authors apply this technique to several classes of materials, namely ceramics, metals, polymers, minerals, semiconductors, and magnetic materials. The accompanying CD-ROM consists of a compendium of experimental spectra.
This book deals with the physics of spin-polarized free electrons. Many aspects of this rapidly expanding field have been treated in review articles, but to date a self-contained monograph has not been available. In writing this book, I have tried to oppose the current trend in science that sees specialists writing primarily for like-minded specialists, and even physicists in closely related fields understanding each other less than they are inclined to admit. I have attempted to treat a modern field of physics in a style similar to that of a textbook. The presentation should be intelligible to readers at the graduate level, and while it may demand concentration, I hope it will not require decipher ing. If the reader feels that it occasionally dwells upon rather elementary topics, he should remember that this pedestrian excursion is meant to be reasonably self-contained. It was, for example, necessary to give a simple introduction to the Dirac theory in order to have a basis for the discussion of Mott scattering-one of the most important techniques in polarized electron studies.
A guide to modern scanning electron microscopy instrumentation, methodology and techniques, highlighting novel applications to cell and molecular biology.
Transmission Electron Microscopy presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematic and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray micronanalysis and electron energy-loss spectroscopy are treated as analytical methods. This fourth edition includes discussions of recent progress, especially in the area of Schottky emission guns, convergent-beam electron diffraction, electron tomography, holography and the high resolution of crystal lattices.