You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
From ecosystems to Facebook, from the Internet to the global financial market, some of the most important and familiar natural systems and social phenomena are based on a networked structure. It is impossible to understand the spread of an epidemic, a computer virus, large-scale blackouts, or massive extinctions without taking into account the network structure that underlies all these phenomena. In this Very Short Introduction, Guido Caldarelli and Michele Catanzaro discuss the nature and variety of networks, using everyday examples from society, technology, nature, and history to explain and understand the science of network theory. They show the ubiquitous role of networks; how networks s...
This report calls for a better understanding of the effects of pharmaceutical residues in the environment, greater international collaboration and accountability distribution, and policy actions to prevent and remedy emerging concerns. Laboratory and field tests show traces of oral contraceptives causing the feminisation of fish and amphibians, and residues of psychiatric drugs altering fish behaviour. Antimicrobial resistance, linked to the overuse of antibiotics, has rapidly escalated into a global health crisis. Unless adequate measures are taken to manage the risks, pharmaceutical residues will increasingly be released into the environment as ageing populations, advances in healthcare, and intensification of meat and fish production spur the demand for pharmaceuticals worldwide. The report outlines a collective, life‑cycle approach to managing pharmaceuticals in the environment. A policy mix of source‑directed, use‑orientated and end‑of‑pipe measures, involving several policy sectors, can help to improve health and protect the environment.
As a guide for pharmaceutical professionals to the issues and practices of drug discovery toxicology, this book integrates and reviews the strategy and application of tools and methods at each step of the drug discovery process. • Guides researchers as to what drug safety experiments are both practical and useful • Covers a variety of key topics – safety lead optimization, in vitro-in vivo translation, organ toxicology, ADME, animal models, biomarkers, and –omics tools • Describes what experiments are possible and useful and offers a view into the future, indicating key areas to watch for new predictive methods • Features contributions from firsthand industry experience, giving readers insight into the strategy and execution of predictive toxicology practices
This comprehensive reference work, updated from the first edition, brings together the knowledge and expertise of contributors from around the world. It includes new topics such as prostaglandin synthetase enzyme, new synthetic eicosanoids, innovative analytical methods, the influence of cytokines in the regulation of synthesis and actions, newer eicosanoids that influence the cardiovascular system, and newly discovered roles in reproduction and interactions with nitric oxide. This book satisfies a surge of interest in prostaglandins—NSAIDS (e.g. aspirin) are the biggest selling drugs of all time, and the field has been refreshed by the advent of new types (selective COX-2 inhibitors, anti-leukotiene drugs).
The test method described in this Test Guideline assesses the effect of chemicals on the reproductive output of Daphnia magna Straus. To this end, young female Daphnia are exposed to the test substance added to water at a range of concentrations (at ...
This book defines the use of computational approaches to predict the environmental toxicity and human health effects of organic chemicals.
This Test Guideline describes a procedure for characterising the bioconcentration potential of substances in fish, using an aqueous (standard and minimised tests) or dietary exposure, under flow-through conditions (but semi-static regimes are ...
Green toxicology is an integral part of green chemistry. One of the key goals of green chemistry is to design less toxic chemicals. Therefore, an understanding of toxicology and hazard assessment is important for any chemist working in green chemistry, but toxicology is rarely part of most chemists' education. As a consequence, chemists lack the toxicological lens necessary to view chemicals in order to design safer substitutions. This book seeks to fill that gap and demonstrate how a basic understanding of toxicology, as well as the tools of in silico and in vitro toxicology, can be an integral part of green chemistry. R&D chemists, product stewards, and toxicologists who work in the field of sustainability, can all benefit from integrating green toxicology principles into their work. Topics include in silico tools for hazard assessment, toxicity testing, and lifecycle considerations, this book aims to act as a bridge between green toxicologists and green chemists.