You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This textbook explores the production of pig iron, covering the first part of the steel production process, known as ironmaking. Divided into seven chapters, it discusses the following topics: raw materials for steel production (coking coal, iron ore, slag-forming agents and fluxes, scrap, ferroalloys and pre-reduced materials), the sintering process (used to prepare the burden for the blast furnace), the pelletizing process (used to agglomerate the fine iron ores), the production of coke (the main reductant in the ironmaking process), the production of iron by reduction with gas (an alternative to the blast furnace) and the production of pig iron in the blast furnace (which is used in more than 65% of steel production worldwide). Specially conceived for graduate and undergraduate courses, this book is based on more than 30 years of teaching experience in courses for undergraduates, graduates (master and Ph.D.) and industry professionals (technicians). It explores the recent trends in the iron- and steelmaking process (which might used in the future production of steel), and features 55 worked exercises and real-world problems to complement of the theoretical sections of the text.
This book describes the operations and industrial processes related to the production of steel. The chapters cover the second part of the iron and steelmaking process, called steelmaking, presenting the stages of the process until obtaining the finished steel product in different formats for distinct applications. This book reports significant operating variables of the processes and basic operations of the steelmaking. The chapters contain numerous solved exercises conceptually supported on the thermodynamic and kinetic fundamentals of the production of steel from the pig iron in the Basic Oxygen Furnace (BOF) and the production of steel and ferroalloys in Electric Arc Furnaces (EAF). The thermal and mechanic fundamentals of the hot rolling operations and the mechanical fundamentals of the cold rolling, forming, and wire drawing to obtain different steel products are also reported. The book summarizes the strengths and uncertainties of steel as a structural material.
This book covers the physical metallurgy of steels as well as the heat treatments used to improve the their properties. A full chapter is dedicated to the atmospheres in the steelmaking, including the implications of the own gases generated in the iron and steelmaking factories and how they could be applied in these treatments. This book is specially conceived for graduate and undergraduate courses, being the result of more than 30 years of teaching experience in courses for undergraduate, graduate (master and Ph. D.), and companies (technicians). The trends in the re-utilization of industrial gases in the iron and steelmaking process are discussed by the authors. Additionally, the book comprises 41 solved exercises, problems and case-studies, as a complement of the theoretical sections of the text. These exercises, problems, and case-studies are based on problems observed in the industrial practice.
The book covers the most important materials (naturals, metals, ceramics, polymers and composites) to be used mainly as structural engineering materials. Their main applications based on the properties are described in the first chapters of the book: mechanical, physical and chemical. The second part of the book is dedicated to the conceptual design by properties for a certain structural application: stiffness, mechanical strength, toughness, fatigue resistance, creep, etc., taking into account the weight and the cost. One of the chapters of the second part of the book is focused on the heat treatments of steels in order to improve their resistance to fatigue. The book concludes with a critical comparison between materials considering their production, properties and cost, and the forecast about the utilization of the different fields of materials in structural applications.
Copper has been an important metal throughout history. Initially, it was used as raw material for the manufacture of tools, weapons, ornamental objects, and more. The later discovery of copper alloys, such as bronze and brass, extended the use of this metal alloy to many different fields based on its mechanical, corrosion, and wear resistance. Nowadays, copper is mainly used in the electrical and thermal conductivity fields, although new uses are being discovered. This book provides a comprehensive overview of copper in two sections on copper mining and processing and copper applications.
The high demand for advanced metallic materials raises the need for an extensive recycling of metals and such a sustainable use of raw materials. "Sustainable Utilization of Metals - Processing, Recovery and Recycling" comprises the latest scientific achievements in efficient production of metals and such addresses sustainable resource use as part of the circular economy strategy. This policy drives the present contributions, aiming on the recirculation of EoL-streams such as Waste Electric and Electronic Equipment (WEEE), multi-metal alloys or composite materials back into metal production. This needs a holistic approach, resulting in the maximal avoidance of waste. Considering both aspects...
This book provides the multidisciplinary reading audience with a comprehensive state-of-the-art overview of research and innovations in the relationship between iron ores and iron ore materials. The book covers industrial sectors dealing with exploration and processing of iron ores as well as with advanced applications for iron ore materials and therefore entails a wide range of research fields including geology, exploration, beneficiation, agglomeration, reduction, smelting, and so on, thus encouraging life cycle thinking across the entire production chain. Iron remains the basis of modern civilization, and our sustainable future deeply depends upon our ability to satisfy the growing demand for iron and steel while decoupling hazardous emissions from economic growth. Therefore, environmental sustainability aspects are also broadly addressed. In response to socioeconomic and climatic challenges, the iron ore sector faces, this book delivers a vision for the new opportunities linked to deployment of the best available, innovative and breakthrough technologies as well as to advanced material applications.
Recursos humanos en investigación y desarrollo.--V.2.
Guía que se realiza para dar cumplimiento a la Ley 11/83 de Reforma Universitaria y Decretos que la desarrollan.
This book describes the operations and industrial processes related to the production of steel. The chapters cover the second part of the iron and steelmaking process, called steelmaking, presenting the stages of the process until obtaining the finished steel product in different formats for distinct applications. This book reports significant operating variables of the processes and basic operations of the steelmaking. The chapters contain numerous solved exercises conceptually supported on the thermodynamic and kinetic fundamentals of the production of steel from the pig iron in the Basic Oxygen Furnace (BOF) and the production of steel and ferroalloys in Electric Arc Furnaces (EAF). The thermal and mechanic fundamentals of the hot rolling operations and the mechanical fundamentals of the cold rolling, forming, and wire drawing to obtain different steel products are also reported. The book summarizes the strengths and uncertainties of steel as a structural material.