You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The seven reviews articles presented in this volume cover a broad range of subjects. The first article is concerned with the use of active optics in modern, large telescopes. The second article discusses variational methods used in nonlinear fibre optics and in related fields. The article by O. Keller which follows deals with a topic of historical interest, presenting a account of researches of the Danish physicist L.V. Lorenz who in 1867 established the electrodynamic theory of light, independently of the work of James Clerk Maxwell. The fourth article is concerned with the canonical quantum description of light propagation in dielectric media. The fifth article by D. Dragoman describes the...
Thermodynamics was created in the ?rst half of the 19th century as a theory designed to explain the functioning of heat engines converting heat into mechanical work. In the course of time, while the scope of research in this ?eld was being extended to a wider and wider class of energy transformations, thermodynamics came to be considered as a general theory of machines identi?ed with energy transducers. Imp- tant progress in biochemistry in the ?rst half of the 20th century, and in molecular biology in the second half, made it possible to think of treating even living organisms as machines, at least on the subcellular level. However, success in applying thermodynamics to elucidate the phenom...
Presents an in-depth interdisciplinary discussion of the concept of information and its role in the control of natural processes. Reviews briefly classical and quantum information theory. Addresses numerous questions, including: Is information reducible to the laws of physics and chemistry? Does the Universe, in its evolution, constantly generate new information? Or are information and information-processing exclusive attributes of living systems, related to the very definition of life? If so, what is the role of information in classical and quantum physics? In what ways does information-processing in the human brain bring about self-consciousness? Accessible to graduate students and professionals from all scientific disciplines, this stimulating book will help to shed light on many controversial issues at the heart of modern science.
Presents a multi-disciplinary perspective on the physics of life and the particular role played by lipids and the lipid-bilayer component of cell membranes. Emphasizes the physical properties of lipid membranes seen as soft and molecularly structured interfaces. By combining and synthesizing insights obtained from a variety of recent studies, an attempt is made to clarify what membrane structure is and how it can be quantitatively described. Shows how biological function mediated by membranes is controlled by lipid membrane structure and organization on length scales ranging from the size of the individual molecule, across molecular assemblies of proteins and lipid domains in the range of nanometers, to the size of whole cells. Applications of lipids in nano-technology and biomedicine are also described.
"Scientists other than quantum physicists often fail to comprehend the enormity of the conceptual change wrought by quantum theory in our basic conception of the nature of matter," writes Henry Stapp. Stapp is a leading quantum physicist who has given particularly careful thought to the implications of the theory that lies at the heart of modern physics. In this book, which contains several of his key papers as well as new material, he focuses on the problem of consciousness and explains how quantum mechanics allows causally effective conscious thought to be combined in a natural way with the physical brain made of neurons and atoms. The book is divided into four sections. The first consists...
At what level of physical existence does "quantum behavior" begin? How does it develop from classical mechanics? This book addresses these questions and thereby sheds light on fundamental conceptual problems of quantum mechanics. It elucidates the problem of quantum-classical correspondence by developing a procedure for quantizing stochastic systems (e.g. Brownian systems) described by Fokker-Planck equations. The logical consistency of the scheme is then verified by taking the classical limit of the equations of motion and corresponding physical quantities. Perhaps equally important, conceptual problems concerning the relationship between classical and quantum physics are identified and discussed. Graduate students and physical scientists will find this an accessible entrée to an intriguing and thorny issue at the core of modern physics.
Nanoscience and Nanotechnology are experiencing a rapid development in many aspects, like real-space atomic-scale imaging, atomic and molecular manipulation, nano-fabrication, etc. , which will have a profound impact not only in every field of research, but also on everyday life in the twenty-first century. The common efforts of researchers from different countries and fields of science can bring complementary expertise to solve the rising problems in order to take advantage of the nanoscale approaches in Materials Science. Nanostructured materials, i. e. materials made with atomic accuracy, show unique properties as a consequence of nanoscale size confinement, predominance of interfacial ph...