You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Fundamentals of Adsorption is the proceedings of the fifth International Conference on the Fundamentals of Adsorption, which was held on May 13-18, 1995 at the Asilomar Conference Center, Pacific Grove, California. This conference was organized completely under the auspices of the International Adsorption Society. It was attended by 196 participants from 24 countries. Members of the Scientific Advisory Board, together with the Conference Committee, selected papers for presentation from a large number of proposals involving an especially high level of international participation. The fundamental aspects of adsorption is a subject which has grown rapidly in recent years, drawing researchers from many disciplines including materials science, chemistry, physics, biochemistry and biotechnology, and chemical, civil, mechanical and environmental engineering. Fundamentals of Adsorption serves as an excellent reference and may be used as a primary text for a graduate level course on adsorption research or as a secondary text for a course on any of the disciplines mentioned above.
The fact that the surfaces of real solids are geometrically distorted and chemically non-uniform has long been realized by the scientists investigating various phenomena occurring on solid surfaces. Even in the case when diffraction experiments show a well-organized bulk solid structure, the surface atoms or molecules will usually exhibit a much smaller degree of surface organization. In addition to the results obtained from electron diffraction, this can be seen in the impressive images obtained from STM and AFM microscopies. This geometric and chemical disorder is the source of the energetic heterogeneity for molecules adsorbing on real solid surfaces. Hundreds of papers have been publishe...
This book includes papers presented at ESCAPE-10, the 10th European Symposium on Computer Aided Process -Engineering, held in Florence, Italy, 7-10th May, 2000. The scientific program reflected two complementary strategic objectives of the 'Computer Aided Process Engineering' (CAPE) Working Party: one checked the status of historically consolidated topics by means of their industrial application and their emerging issues, while the other was addressed to opening new windows to the CAPE audience by inviting adjacent Working Parties to co-operate in the creation of the technical program.The former CAPE strategic objective was covered by the topics: Numerical Methods, Process Design and Synthes...
Many processes of the chemical industry are based upon heterogeneous catalysis. Two important items of these processes are the development of the catalyst itself and the design and optimization of the reactor. Both aspects would benefit from rigorous and accurate kinetic modeling, based upon information on the working catalyst gained from classical steady state experimentation, but also from studies using surface science techniques, from quantum chemical calculations providing more insight into possible reaction pathways and from transient experimentation dealing with reactions and reactors. This information is seldom combined into a kinetic model and into a quantitative description of the process. Generally the catalytic aspects are dealt with by chemists and by physicists, while the chemical engineers are called upon for mechanical aspects of the reactor design and its control. The symposium "Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis" aims at illustrating a more global and concerted approach through a number of prestigious keynote lectures and severely screened oral and poster presentations.
Owing to the rapid emergence and growth of techniques in the engineering application of fractals, it has become necessary to gather the most recent advances on a regular basis. This book is a continuation of the first volume - published in 1997 - but contains interesting developments. A major point is that mathematics has become more and more involved in the definition and use of fractal models. It seems that the time of the qualitative observation of fractal phenomena has gone. Now the main models are strongly based upon theoretical arguments. Fractals: Theory and Applications in Engineering is a multidisciplinary book which should interest every scientist working in areas connected to fractals.
The analysis and control of mixing is of great interest because of the potential for optimizing the performance of many flow processes. This monograph presents a unique overview of the physics, mathematics and state-of-the-art theoretical/numerical modeling and experimental investigations of mixing. It approaches the subject of mixing from many angles: presents theoretical and experimental results, discusses laminar and turbulent flows, considers macro and micro scales, elaborates on purely advective and advective-diffusive flows, and considers conceptual and industrial-relevant mixing devices. This monograph provides an essential reading for graduate students and postdoctoral researches interested in the investigation of mixing, and constitutes an indispensable reference for mechanical, chemical and aeronautical engineers, and applied mathematicians in universities and industries.
Nanoporous Materials IV contains the invited lectures and peer-reviewed oral and poster contributions to be presented at the 4th International Symposium on Nanoporous Materials, which will be hosted in Niagara Falls, Ontario, Canada, June 7-10, 2005. This volume covers complementary approaches to and recent advances in the field of nanostructured materials with pore sizes larger than 1nm, such as periodic mesoporous molecular sieves (e.g., MCM-41 and SBA-15) and related materials including clays, ordered mesoporous carbons, colloidal crystal templated materials, porous polymers and sol gels. The broad range of topics covered in relation to the synthesis and characterization of ordered mesopo...
Presents a unified treatment of anomalous diffusion problems using fractional calculus in a wide range of applications across scientific and technological disciplines.
Expert authors draw on fundamental theory to explain the core principles and key design considerations for developing cognitive radio systems.