You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A unique electrical engineering approach to alternative sources ofenergy Unlike other books that deal with alternative sources of energyfrom a mechanical point of view, Integration of Alternative Sourcesof Energy takes an electrical engineering perspective. Moreover,the authors examine the full spectrum of alternative and renewableenergy with the goal of developing viable methods of integratingenergy sources and storage efficiently. Readers become thoroughlyconversant with the principles, possibilities, and limits ofalternative and renewable energy. The book begins with a general introduction and then reviewsprinciples of thermodynamics. Next, the authors explore both commonand up-and-coming...
Now in its Third Edition, Alternative Energy Systems: Design and Analysis with Induction Generators has been renamed Modeling and Analysis with Induction Generators to convey the book’s primary objective—to present the fundamentals of and latest advances in the modeling and analysis of induction generators. New to the Third Edition Revised equations and mathematical modeling Addition of solved problems as well as suggested problems at the end of each chapter New modeling and simulation cases Mathematical modeling of the Magnus turbine to be used with induction generators Detailed comparison between the induction generators and their competitors Modeling and Analysis with Induction Generators, Third Edition aids in understanding the process of self-excitation, numerical analysis of stand-alone and multiple induction generators, requirements for optimized laboratory experimentation, application of modern vector control, optimization of power transference, use of doubly fed induction generators, computer-based simulations, and social and economic impacts.
Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covere...
As the world moves toward renewable energy sources to combat environmental and power distribution issues, there has been a resurgence of interest in induction generators, particularly in their use in wind and hydropower generation systems. Induction machines operating as generators are rugged and cost effective, and with recent advances in control and optimization, the control design aspects are now moving from the laboratory to the desks of practicing engineers. Renewable Energy Systems: Design and Analysis with Induction Generators presents the first comprehensive exposition of induction machines used for power generation. Focusing on renewable energy applications, the authors address virt...
The Updated Third Edition Provides a Systems Approach to Sustainable Green Energy Production and Contains Analytical Tools for the Design of Renewable Microgrids The revised third edition of Design of Smart Power Grid Renewable Energy Systems integrates three areas of electrical engineering: power systems, power electronics, and electric energy conversion systems. The book also addresses the fundamental design of wind and photovoltaic (PV) energy microgrids as part of smart-bulk power-grid systems. In order to demystify the complexity of the integrated approach, the author first presents the basic concepts, and then explores a simulation test bed in MATLAB® in order to use these concepts to...
This book covers the use of fuzzy logic for power grids. Power systems need to accommodate intermittent renewables and changes in loads while ensuring high power quality. Fuzzy logic uses values between 0 and 1 rather than binary ones, offering advantages in adaptability for energy systems with renewables.
Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various...
Comprehensive, cross-disciplinary coverage of Smart Grid issues from global expert researchers and practitioners. This definitive reference meets the need for a large scale, high quality work reference in Smart Grid engineering which is pivotal in the development of a low-carbon energy infrastructure. Including a total of 83 articles across 3 volumes The Smart Grid Handbook is organized in to 6 sections: Vision and Drivers, Transmission, Distribution, Smart Meters and Customers, Information and Communications Technology, and Socio-Economic Issues. Key features: Written by a team representing smart grid R&D, technology deployment, standards, industry practice, and socio-economic aspects. Visi...
The latest tools and techniques for addressing the challenges of 21st century power generation, renewable sources and distribution systems Renewable energy technologies and systems are advancing by leaps and bounds, and it’s only a matter of time before renewables replace fossil fuel and nuclear energy sources. Written for practicing engineers, researchers and students alike, this book discusses state-of-the art mathematical and engineering tools for the modeling, simulation and control of renewable and mixed energy systems and related power electronics. Computational methods for multi-domain modeling of integrated energy systems and the solution of power electronics engineering problems a...
Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems Discover how modern techniques have shaped complex power system expansion planning with this one-stop resource from two experts in the field Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems delivers a comprehensive collection of innovative approaches to the probabilistic planning of generation and transmission systems under uncertainties. The book includes renewables and energy storage calculations when using probabilistic and deterministic reliability techniques to assess system performance from a long-term expansion planning viewpo...