You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
S. Panchapakesan has made significant contributions to ranking and selection and has published in many other areas of statistics, including order statistics, reliability theory, stochastic inequalities, and inference. Written in his honor, the twenty invited articles in this volume reflect recent advances in these areas and form a tribute to Panchapakesan’s influence and impact on these areas. Featuring theory, methods, applications, and extensive bibliographies with special emphasis on recent literature, this comprehensive reference work will serve researchers, practitioners, and graduate students in the statistical and applied mathematics communities.
This book shows that with minimal modifications of postulates of non-relativistic quantum mechanics to allow for non-unitary representations of symmetry groups (Lorentz group in particular), one achieves a fully relativistic quantum theory without any of the issues (like negative energies, etc.) that led to the second quantization and QFT. It is shown that quite a few phenomena in elementary particle physics (like for example neutral kaon mixing, CP symmetry and it's supposed breaking) can be explained purely as a consequence of relativistic invariance and relativistic invariance alone. It is shown that by categorizing mesons via the representation of Lorentz group they belong to, one can ex...
Symmetries, coupled with the mathematical concept of group theory, are an essential conceptual backbone in the formulation of quantum field theories capable of describing the world of elementary particles. This primer is an introduction to and survey of the underlying concepts and structures needed in order to understand and handle these powerful tools. Specifically, in Part I of the book the symmetries and related group theoretical structures of the Minkowskian space-time manifold are analyzed, while Part II examines the internal symmetries and their related unitary groups, where the interactions between fundamental particles are encoded as we know them from the present standard model of particle physics. This book, based on several courses given by the authors, addresses advanced graduate students and non-specialist researchers wishing to enter active research in the field, and having a working knowledge of classical field theory and relativistic quantum mechanics. Numerous end-of-chapter problems and their solutions will facilitate the use of this book as self-study guide or as course book for topical lectures.
A Course in Quantum Mechanics Unique graduate-level textbook on quantum mechanics by John David Jackson, author of the renowned Classical Electrodynamics A Course in Quantum Mechanics is drawn directly from J. D. Jackson’s detailed lecture notes and problem sets. It is edited by his colleague and former student Robert N. Cahn, who has taken care to preserve Jackson’s unique style. The textbook is notable for its original problems focused on real applications, with many addressing published data in accompanying tables and figures. Solutions are provided for problems that are critical for understanding the material and that lead to the most important physical consequences. Overall, the tex...
Thermal processes are ubiquitous and an understanding of thermal phenomena is essential for a complete description of the physics of nanoparticles, both for the purpose of modeling the dynamics of the particles and for the correct interpretation of experimental data. The second edition of this book follows the logic of first edition, with an emphasis on presentation of literature results and to guide the reader through derivations. Several topics have been added to the repertoire, notably magnetism, a fuller exposition of aggregation and the related area of nucleation theory. Also a new chapter has been added on the transient hot electron phenomenon. The book remains focused on the fundamental properties of nanosystems in the gas phase. Each chapter is enriched with additional new exercises and three Appendices provide additional useful material.
Reprint of the original, first published in 1874.
This book is intended for physicists and chemists who need to understand the theory of atomic and molecular structure and processes, and who wish to apply the theory to practical problems. As far as practicable, the book provides a self-contained account of the theory of relativistic atomic and molecular structure, based on the accepted formalism of bound-state Quantum Electrodynamics. The author was elected a Fellow of the Royal Society of London in 1992.
This book constitutes the proceedings of the 11th IFIP WG 10.3 International Conference on Network and Parallel Computing, NPC 2014, held in Ilan, Taiwan, in September 2014. The 42 full papers and 24 poster papers presented were carefully reviewed and selected from 196 submissions. They are organized in topical sections on systems, networks, and architectures, parallel and multi-core technologies, virtualization and cloud computing technologies, applications of parallel and distributed computing, and I/O, file systems, and data management.
This well-written book contains the analytical tools, concepts, and viewpoints needed for modern applied mathematics. It treats various practical methods for solving problems such as differential equations, boundary value problems, and integral equations. Pragmatic approaches to difficult equations are presented, including the Galerkin method, the method of iteration, Newton’s method, projection techniques, and homotopy methods.