You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
One of the most pressing tasks in biotechnology today is to unlock the function of each of the thousands of new genes identified every day. Scientists do this by analyzing and interpreting proteins, which are considered the task force of a gene. This single source reference covers all aspects of proteins, explaining fundamentals, synthesizing the latest literature, and demonstrating the most important bioinformatics tools available today for protein analysis, interpretation and prediction. Students and researchers of biotechnology, bioinformatics, proteomics, protein engineering, biophysics, computational biology, molecular modeling, and drug design will find this a ready reference for staying current and productive in this fast evolving interdisciplinary field. - Explains all aspects of proteins including sequence and structure analysis, prediction of protein structures, protein folding, protein stability, and protein interactions - Presents a cohesive and accessible overview of the field, using illustrations to explain key concepts and detailed exercises for students.
This book is indexed in Chemical Abstracts ServiceThe interactions of proteins with other molecules are important in many cellular activities. Investigations have been carried out to understand the recognition mechanism, identify the binding sites, analyze the the binding affinity of complexes, and study the influence of mutations on diseases. Protein interactions are also crucial in structure-based drug design.This book covers computational analysis of protein-protein, protein-nucleic acid and protein-ligand interactions and their applications. It provides up-to-date information and the latest developments from experts in the field, using illustrations to explain the key concepts and applications. This volume can serve as a single source on comparative studies of proteins interacting with proteins/DNAs/RNAs/carbohydrates and small molecules.
Presents algorithmic techniques for solving problems in bioinformatics, including applications that shed new light on molecular biology This book introduces algorithmic techniques in bioinformatics, emphasizing their application to solving novel problems in post-genomic molecular biology. Beginning with a thought-provoking discussion on the role of algorithms in twenty-first-century bioinformatics education, Bioinformatics Algorithms covers: General algorithmic techniques, including dynamic programming, graph-theoretical methods, hidden Markov models, the fast Fourier transform, seeding, and approximation algorithms Algorithms and tools for genome and sequence analysis, including formal and ...
Given the immense progress achieved in elucidating protein-protein complex structures and in the field of protein interaction modeling, there is great demand for a book that gives interested researchers/students a comprehensive overview of the field. This book does just that. It focuses on what can be learned about protein-protein interactions from the analysis of protein-protein complex structures and interfaces. What are the driving forces for protein-protein association? How can we extract the mechanism of specific recognition from studying protein-protein interfaces? How can this knowledge be used to predict and design protein-protein interactions (interaction regions and complex structu...
This book – in conjunction with the volumes LNCS 8588 and LNAI 8589 – constitutes the refereed proceedings of the 10th International Conference on Intelligent Computing, ICIC 2014, held in Taiyuan, China, in August 2014. The 58 papers of this volume were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections such as machine learning; neural networks; image processing; computational systems biology and medical informatics; biomedical informatics theory and methods; advances on bio-inspired computing; protein and gene bioinformatics: analysis, algorithms, applications.
This volume is primarily a compilation of contributed articles representing the impact and application of Ramachandran's work on conformation analysis of biopolymers, as well as recent advances in macromolecular structural biology, involving diverse experimental and computational approaches. This volume is being published to coincide with a conference on "Biomolecular Forms and Functions: A celebration of 50 years of the Ramachandran Map" being held at the Indian Institute of Science, Bangalore, in January 2013.
Most life science researchers will agree that biology is not a truly theoretical branch of science. The hype around computational biology and bioinformatics beginning in the nineties of the 20th century was to be short lived (1, 2). When almost no value of practical importance such as the optimal dose of a drug or the three-dimensional structure of an orphan protein can be computed from fundamental principles, it is still more straightforward to determine them experimentally. Thus, experiments and observationsdogeneratetheoverwhelmingpartofinsightsintobiologyandmedicine. The extrapolation depth and the prediction power of the theoretical argument in life sciences still have a long way to go....
The enormous complexity of biological systems at the molecular level must be answered with powerful computational methods. Computational biology is a young field, but has seen rapid growth and advancement over the past few decades. Surveying the progress made in this multidisciplinary field, the Handbook of Computational Molecular Biology of
Protein Interactions as Targets in Drug Discovery, Volume 121, is dedicated to the design of therapeutics, both experimental and computational, that target protein interactions. Chapters in this new release include Trends in structure based drug design with protein targets, From fragment- to peptide-protein interaction: addressing the structural basis of binding using Supervised Molecular Dynamics (SuMD), Protein-protein and protein-ligand interactions: identification of potential inhibitors through computational analysis, Aromatic-aromatic interactions in protein-drug and protein-protein interactions, Role of protein-protein interaction in allosteric drug design within the human methyltransferome, and much more.
This book constitutes the refereed proceedings of the 8th International Conference on Intelligent Computing, ICIC 2012, held in Huangshan, China, in July 2012. The 85 revised full papers presented were carefully reviewed and selected from 753 submissions. The papers are organized in topical sections on neural networks, evolutionar learning and genetic algorithms, granular computing and rough sets, biology inspired computing and optimization, nature inspired computing and optimization, cognitive science and computational neuroscience, knowledge discovery and data mining, quantum computing, machine learning theory and methods, healthcare informatics theory and methods, biomedical informatics theory and methods, complex systems theory and methods, intelligent computing in signal processing, intelligent computing in image processing, intelligent computing in robotics, intelligent computing in computer vision, intelligent agent and web applications, special session on advances in information security 2012.