You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Presenting an up-to-date report on electronic glasses for researchers in condensed matter physics.
When close to a continuous phase transition, many physical systems can usefully be mapped to ensembles of fluctuating loops, which might represent for example polymer rings, or line defects in a lattice magnet, or worldlines of quantum particles. 'Loop models' provide a unifying geometric language for problems of this kind. This thesis aims to extend this language in two directions. The first part of the thesis tackles ensembles of loops in three dimensions, and relates them to the statistical properties of line defects in disordered media and to critical phenomena in two-dimensional quantum magnets. The second part concerns two-dimensional loop models that lie outside the standard paradigms: new types of critical point are found, and new results given for the universal properties of polymer collapse transitions in two dimensions. All of these problems are shown to be related to sigma models on complex or real projective space, CP^{n−1} or RP^{n−1} -- in some cases in a 'replica' limit -- and this thesis is also an in-depth investigation of critical behaviour in these field theories.
Frontiers in Natural Product Chemistry is a book series devoted to publishing monographs that highlight important advances in natural product chemistry. The series covers all aspects of research in the chemistry and biochemistry of naturally occurring compounds, including research on natural substances derived from plants, microbes and animals. Reviews of structure elucidation, biological activity, organic and experimental synthesis of natural products as well as developments of new methods are also included in the series. Volume eight of the series brings seven reviews covering these main themes: marine natural products, neuroprotective natural products, chromenes, coumarin derivatives, and...
First-generation semiconductors could not be properly termed "doped- they were simply very impure. Uncontrolled impurities hindered the discovery of physical laws, baffling researchers and evoking pessimism and derision in advocates of the burgeoning "pure" physical disciplines. The eventual banish ment of the "dirt" heralded a new era in semiconductor physics, an era that had "purity" as its motto. It was this era that yielded the successes of the 1950s and brought about a new technology of "semiconductor electronics". Experiments with pure crystals provided a powerful stimulus to the develop ment of semiconductor theory. New methods and theories were developed and tested: the effective-mas...
Frontiers in Natural Product Chemistry is an Ebook series devoted to publishing monographs that highlight important advances in natural product chemistry. The Ebook series covers all aspects of research in the chemistry and biochemistry of naturally occurring compounds including coverage of work on natural substances of land and sea and of plants, microbes and animals. Reviews of structure elucidation, biological activity, organic and experimental synthesis of natural products as well as developments of new methods are included. The second volume of the series brings seven reviews covering polyphenols of various types, Sambucus nigra as a health promoter, corrinoids in food samples, flavonoids in infected plants and much more.
The only book series to summarize the latest progress on organic reaction mechanisms, Organic Reaction Mechanisms, 1991 surveys the development in understanding of the main classes of organic reaction mechanisms reported in the primary scientific literature in 1991. The 27th annual volume in this highly successful series highlights mechanisms of stereo-specific reactions. Reviews are compiled by a team of experienced editors and authors, allowing advanced undergraduates, graduate students, postdocs, and chemists to rely on the volume's continuing quality of selection and presentation.
Nanostructured materials is one of the hottest and fastest growing areas in today's materials science field, along with the related field of solid state physics. Nanostructured materials and their based technologies have opened up exciting new possibilites for future applications in a number of areas including aerospace, automotive, x-ray technology, batteries, sensors, color imaging, printing, computer chips, medical implants, pharmacy, and cosmetics. The ability to change properties on the atomic level promises a revolution in many realms of science and technology. Thus, this book details the high level of activity and significant findings are available for those involved in research and d...