You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
This text contains expository contributions by respected researchers on the connections between algebraic geometry, topology, commutative algebra, representation theory, and convex geometry.
These proceedings contain the contributions of some of the participants in the "intensive research period" held at the De Giorgi Research Center in Pisa, during the period May-June 2010. The central theme of this research period was the study of configuration spaces from various points of view. This topic originated from the intersection of several classical theories: Braid groups and related topics, configurations of vectors (of great importance in Lie theory and representation theory), arrangements of hyperplanes and of subspaces, combinatorics, singularity theory. Recently, however, configuration spaces have acquired independent interest and indeed the contributions in this volume go far beyond the above subjects, making it attractive to a large audience of mathematicians.
This monograph, which grew out of a series of lectures delivered by Stephen Wiggins at the Fields Institute in early 1993, is concerned with the geometrical viewpoint of the global dynamics of nonlinear dynamical systems. With appropriate examples and concise explanations, Wiggins unites many different topics into one volume and makes a unique contribution to the field. Engineers, physicists, chemists, and mathematicians who work on issues related to the global dynamics of nonlinear dynamical systems will find these lectures very useful.
Table of contents: Plenary Lectures V.I. Arnold: The Vassiliev Theory of Discriminants and Knots L. Babai: Transparent Proofs and Limits to Approximation C. De Concini: Poisson Algebraic Groups and Representations of Quantum Groups at Roots of 1 S.K. Donaldson: Gauge Theory and Four-Manifold Topology W. Mller: Spectral Theory and Geometry D. Mumford: Pattern Theory: A Unifying Perspective A.-S. Sznitman: Brownian Motion and Obstacles M. Vergne: Geometric Quantization and Equivariant Cohomology Parallel Lectures Z. Adamowicz: The Power of Exponentiation in Arithmetic A. Bjrner: Subspace Arrangements B. Bojanov: Optimal Recovery of Functions and Integrals J.-M. Bony: Existence globale et diffusion pour les modles discrets R.E. Borcherds: Sporadic Groups and String Theory J. Bourgain: A Harmonic Analysis Approach to Problems in Nonlinear Partial Differatial Equations F. Catanese: (Some) Old and New Results on Algebraic Surfaces Ch. Deninger: Evidence for a Cohomological Approach to Analytic Number Theory S. Dostoglou and D.A. Salamon: Cauchy-Riemann Operators, Self-Duality, and the Spectral Flow.
A pro-p group is the inverse limit of some system of finite p-groups, that is, of groups of prime-power order where the prime - conventionally denoted p - is fixed. Thus from one point of view, to study a pro-p group is the same as studying an infinite family of finite groups; but a pro-p group is also a compact topological group, and the compactness works its usual magic to bring 'infinite' problems down to manageable proportions. The p-adic integers appeared about a century ago, but the systematic study of pro-p groups in general is a fairly recent development. Although much has been dis covered, many avenues remain to be explored; the purpose of this book is to present a coherent account of the considerable achievements of the last several years, and to point the way forward. Thus our aim is both to stimulate research and to provide the comprehensive background on which that research must be based. The chapters cover a wide range. In order to ensure the most authoritative account, we have arranged for each chapter to be written by a leading contributor (or contributors) to the topic in question. Pro-p groups appear in several different, though sometimes overlapping, contexts.
While high-quality books and journals in this field continue to proliferate, none has yet come close to matching the Handbook of Discrete and Computational Geometry, which in its first edition, quickly became the definitive reference work in its field. But with the rapid growth of the discipline and the many advances made over the past seven years, it's time to bring this standard-setting reference up to date. Editors Jacob E. Goodman and Joseph O'Rourke reassembled their stellar panel of contributors, added manymore, and together thoroughly revised their work to make the most important results and methods, both classic and cutting-edge, accessible in one convenient volume. Now over more the...
This book discusses the equivariant cohomology theory of differentiable manifolds. Although this subject has gained great popularity since the early 1980's, it has not before been the subject of a monograph. It covers almost all important aspects of the subject The authors are key authorities in this field.
Hans Duistermaat, an influential geometer-analyst, made substantial contributions to the theory of ordinary and partial differential equations, symplectic, differential, and algebraic geometry, minimal surfaces, semisimple Lie groups, mechanics, mathematical physics, and related fields. Written in his honor, the invited and refereed articles in this volume contain important new results as well as surveys in some of these areas, clearly demonstrating the impact of Duistermaat's research and, in addition, exhibiting interrelationships among many of the topics.