You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Much of the importance of mathematics lies in its ability to provide theories which are useful in widely different fields of endeavour. A good example is the large and amorphous body of knowledge known as the theory of linear operators or operator theory, which came to life about a century ago as a theory to encompass properties common to matrix, differential, and integral operators. Thus, it is a primary purpose of operator theory to provide a coherent body of knowledge which can explain phenomena common to the enormous variety of problems in which such linear operators play a part. The theory is a vital part of functional analysis, whose methods and techniques are one of the major advances of twentieth century mathematics and now play a pervasive role in the modeling of phenomena in probability, imaging, signal processing, systems theory, etc, as well as in the more traditional areas of theoretical physics and mechanics. This book is based on lectures presented at a meeting on operator theory and its applications held at the Fields Institute in 1994.
This volume is dedicated to Bill Helton on the occasion of his sixty fifth birthday. It contains biographical material, a list of Bill's publications, a detailed survey of Bill's contributions to operator theory, optimization and control and 19 technical articles. Most of the technical articles are expository and should serve as useful introductions to many of the areas which Bill's highly original contributions have helped to shape over the last forty odd years. These include interpolation, Szegö limit theorems, Nehari problems, trace formulas, systems and control theory, convexity, matrix completion problems, linear matrix inequalities and optimization. The book should be useful to graduate students in mathematics and engineering, as well as to faculty and individuals seeking entry level introductions and references to the indicated topics. It can also serve as a supplementary text to numerous courses in pure and applied mathematics and engineering, as well as a source book for seminars.
This volume comprises the specially prepared lecture notes of a a Summer School on "Factorization and Integrable Systems" held in September 2000 at the University of Algarve in Portugal. The main aim of the school was to review the modern factorization theory and its application to classical and quantum integrable systems. The program consisted of a number of short courses given by leading experts in the field.
The volume is dedicated to Lev Sakhnovich, who made fundamental contributions in operator theory and related topics. Besides bibliographic material, it includes a number of selected papers related to Lev Sakhnovich's research interests. The papers are related to operator identities, moment problems, random matrices and linear stochastic systems.
Complex function theory and linear algebra provide much of the basic mathematics needed by engineers engaged in numerical computations, signal processing or control. The transfer function of a linear time invariant system is a function of the complex vari able s or z and it is analytic in a large part of the complex plane. Many important prop erties of the system for which it is a transfer function are related to its analytic prop erties. On the other hand, engineers often encounter small and large matrices which describe (linear) maps between physically important quantities. In both cases similar mathematical and computational problems occur: operators, be they transfer functions or matrice...
This book is devoted to some topical problems and applications of operator theory and its interplay with modern complex analysis. It consists of 20 selected survey papers that represent updated (mainly plenary) addresses to the IWOTA 2000 conference held at Bordeaux from June 13 to 16, 2000. The main subjects of the volume include: - spectral analysis of periodic differential operators and delay equations, stabilizing controllers, Fourier multipliers; - multivariable operator theory, model theory, commutant lifting theorems, coisometric realizations; - Hankel operators and forms; - operator algebras; - the Bellman function approach in singular integrals and harmonic analysis, singular integral operators and integral representations; - approximation in holomorphic spaces. These subjects are unified by the common "operator theoretic approach" and the systematic use of modern function theory techniques.
This volume presents the refereed proceedings of the Conference in Operator The ory in Honour of Moshe Livsic 80th Birthday, held June 29 to July 4, 1997, at the Ben-Gurion University of the Negev (Beer-Sheva, Israel) and at the Weizmann In stitute of Science (Rehovot, Israel). The volume contains papers in operator theory and its applications (understood in a very wide sense), many of them reflecting, 1 directly or indirectly, a profound impact of the work of Moshe Livsic. Moshe (Mikhail Samuilovich) Livsic was born on July 4, 1917, in the small town of Pokotilova near Uman, in the province of Kiev in the Ukraine; his family moved to Odessa when he was four years old. In 1933 he enrolled in...
This is the first volume of a collection of original and review articles on recent advances and new directions in a multifaceted and interconnected area of mathematics and its applications. It encompasses many topics in theoretical developments in operator theory and its diverse applications in applied mathematics, physics, engineering, and other disciplines. The purpose is to bring in one volume many important original results of cutting edge research as well as authoritative review of recent achievements, challenges, and future directions in the area of operator theory and its applications.
This is the first Supplementary volume to Kluwer's highly acclaimed Encyclopaedia of Mathematics. This additional volume contains nearly 600 new entries written by experts and covers developments and topics not included in the already published 10-volume set. These entries have been arranged alphabetically throughout. A detailed index is included in the book. This Supplementary volume enhances the existing 10-volume set. Together, these eleven volumes represent the most authoritative, comprehensive up-to-date Encyclopaedia of Mathematics available.