You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Amber is the collective name for a suite of programs that allow users to carry out molecular dynamics simulations, particularly on biomolecules. None of the individual programs carries this name, but the various parts work reasonably well together, and provide a powerful framework for many common calculations. The term Amber is also used to refer to the empirical force fields that are implemented here. It should be recognized, however, that the code and force field are separate: several other computer packages have implemented the Amber force fields, and other force fields can be implemented with the Amber programs. Further, the force fields are in the public domain, whereas the codes are di...
Amber is the collective name for a suite of programs that allow users to carry out molecular dynamics simulations, particularly on biomolecules. None of the individual programs carries this name, but the various parts work reasonably well together, and provide a powerful framework for many common calculations.[1, 2] The term Amber is also used to refer to the empirical force fields that are implemented here.[3, 4] It should be recognized, however, that the code and force field are separate: several other computer packages have implemented the Amber force fields, and other force fields can be implemented with the Amber programs. Further, the force fields are in the public domain, whereas the ...
Amber is the collective name for a suite of programs that allow users to carry out molecular dynamics simulations, particularly on biomolecules. None of the individual programs carries this name, but the various parts work reasonably well together, and provide a powerful framework for many common calculations. The term Amber is also used to refer to the empirical force fields that are implemented here. It should be recognized, however, that the code and force field are separate: several other computer packages have implemented the Amber force fields, and other force fields can be implemented with the Amber programs. Further, the force fields are in the public domain, whereas the codes are di...
The first comprehensive coverage of all facets of the Claisen rearrangement and its variants. As such, this book helps synthetic chemists to exploit the vast potential of this elegant C-C linking reaction, discusses a wealth of catalytic options, and gives those more theory-minded chemists a detailed insight into the mechanistic aspects of the Claisen rearrangement. An invaluable source of information and a ready reference for all organic and catalytic chemists, as well as those working with/on organometallics, and in industry.
This volume is an interdisciplinary treatise on the theoretical approach to solvation problems. It describes the essential details of the theoretical methods and places them into the context of modern applications, and hence is of broad interest to theoreticians and experimentalists. The assembly of these modern methods and applications into one volume is a unique contribution to date and gives a broad and ample description of the field in its present stage of development.
"This book is about Free Energy Methods in Drug Discovery: Current State and Future Directions"--
Free energy constitutes the most important thermodynamic quantity to understand how chemical species recognize each other, associate or react. Examples of problems in which knowledge of the underlying free energy behaviour is required, include conformational equilibria and molecular association, partitioning between immiscible liquids, receptor-drug interaction, protein-protein and protein-DNA association, and protein stability. This volume sets out to present a coherent and comprehensive account of the concepts that underlie different approaches devised for the determination of free energies. The reader will gain the necessary insight into the theoretical and computational foundations of th...
This book covers the theory and applications of continuum solvation models. The main focus is on the quantum-mechanical version of these models, but classical approaches and combined or hybrid techniques are also discussed. Devoted to solvation models in which reviews of the theory, the computational implementation Solvation continuum models are treated using the different points of view from experts belonging to different research fields Can be read at two levels: one, more introductive, and the other, more detailed (and more technical), on specific physical and numerical aspects involved in each issue and/or application Possible limitations or incompleteness of models is pointed out with, if possible, indications of future developments Four-colour representation of the computational modeling throughout.
Unique in its comprehensive coverage of not only theoretical methods but also applications in computational spectroscopy, this ready reference and handbook compiles the developments made over the last few years, from single molecule studies to the simulation of clusters and the solid state, from organic molecules to complex inorganic systems and from basic research to commercial applications in the area of environment relevance. In so doing, it covers a multitude of apparatus-driven technologies, starting with the common and traditional spectroscopic methods, more recent developments (THz), as well as rather unusual methodologies and systems, such as the prediction of parity violation, rare gas HI complexes or theoretical spectroscopy of the transition state. With its summarized results of so many different disciplines, this timely book will be of interest to newcomers to this hot topic while equally informing experts about developments in neighboring fields.
The concept of adiabatic electronic potential-energy surfaces, defined by the Born?Oppenheimer approximation, is fundamental to our thinking about chemical processes. Recent computational as well as experimental studies have produced ample evidence that the so-called conical intersections of electronic energy surfaces, predicted by von Neumann and Wigner in 1929, are the rule rather than the exception in polyatomic molecules. It is nowadays increasingly recognized that conical intersections play a key mechanistic role in chemical reaction dynamics. This volume provides an up-to-date overview of the multi-faceted research on the role of conical intersections in photochemistry and photobiology, including basic theoretical concepts, novel computational strategies as well as innovative experiments. The contents and discussions will be of value to advanced students and researchers in photochemistry, molecular spectroscopy and related areas.