You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Editorial Office of Frontiers in Plant Science would like to thank all the Chief Editors, Associate Editors and Review Editors that played an integral part in Frontiers’ innovative Collaborative Peer-Review process in 2020. In particular, we would like to recognize and thank Prof. Joshua L. Heazlewood – our now former Field Chief Editor, for his commitment, support and enthusiasm for the Plant Science field. Josh’s dedication and leadership has helped Frontiers in Plant Science become the most cited journal in the field with a strong editorial community. Looking forward, we’re excited to welcome Prof. Yunde Zhao, as our new Field Chief Editor in 2021. Having been with Frontiers in Plant Science since 2017, Yunde has contributed extensively to the development of the journal and will continue to ensure the journal goes from strength to strength.
2009 life science book award from IAA.
A bold, science-based corrective to the groundswell of misinformation about food and how it's produced, examining in detail local and organic food, food companies, nutrition labeling, ethical treatment of animals, environmental impact, and every other aspect from farm to table. Consumers want to know more about their food—including the farm from which it came, the chemicals used to grow it, its nutritional value, how the animals were treated, and the costs to the environment. They are being told that buying organic foods, unprocessed and sourced from small local farms, is the most healthful and sustainable option. But what if we’re wrong? In Resetting the Table, Robert Paarlberg reviews ...
This book describes the strategy used for sequencing, assembling and annotating the tomato genome and presents the main characteristics of this sequence with a special focus on repeated sequences and the ancestral polyploidy events. It also includes the chloroplast and mitochondrial genomes. Tomato (Solanum lycopersicum) is a major crop plant as well as a model for fruit development, and the availability of the genome sequence has completely changed the paradigm of the species’ genetics and genomics. The book describes the numerous genetic and genomic resources available, the identified genes and quantitative trait locus (QTL) identified, as well as the strong synteny across Solanaceae species. Lastly, it discusses the consequences of the availability of a high-quality genome sequence of the cultivated species for the research community. It is a valuable resource for students and researchers interested in the genetics and genomics of tomato and Solanaceae.
Jointly published with INRA, Paris. This book covers all aspects of the transfer of nitrogen from the soil and air to a final resting place in the seed protein of a crop plant. It describes the physiological and molecular mechanisms of ammonium and nitrate transport and assimilation, including symbiotic nitrogen fixation by the Rhizobiacea. Amino acid metabolism and nitrogen traffic during plant growth and development and details of protein biosynthesis in the seeds are also extensively covered. Finally, the effects of the application of nitrogen fertilisers on plant growth, crop yield and the environment are discussed. Written by international experts in their field, Plant Nitrogen is essential reading for all plant biochemists, biotechnologists, molecular biologists and physiologists as well as plant breeders, agricultural engineers, agronomists and phytochemists.
Genetic approaches to understanding plant growth and development have always benefitted from screens that are simple, quantitative and rapid. Visual screens and morphometric analysis have yielded a plethora of interesting mutants and traits that have provided insight into complex regulatory pathways, and yet many genes within any given plant genome remain undefined. The premise underlying High Throughput Phenotyping in Plants: Methods and Protocols is that the higher the resolution of the phenotype analysis the more likely that new genes and complex interactions will be revealed. The methods described in this volume can be generally classified as quantitative profiling of cellular components...