Seems you have not registered as a member of go-pdf.online!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Basic Algebraic Topology and its Applications
  • Language: en
  • Pages: 615

Basic Algebraic Topology and its Applications

  • Type: Book
  • -
  • Published: 2016-09-16
  • -
  • Publisher: Springer

This book provides an accessible introduction to algebraic topology, a field at the intersection of topology, geometry and algebra, together with its applications. Moreover, it covers several related topics that are in fact important in the overall scheme of algebraic topology. Comprising eighteen chapters and two appendices, the book integrates various concepts of algebraic topology, supported by examples, exercises, applications and historical notes. Primarily intended as a textbook, the book offers a valuable resource for undergraduate, postgraduate and advanced mathematics students alike. Focusing more on the geometric than on algebraic aspects of the subject, as well as its natural deve...

Basic Modern Algebra with Applications
  • Language: en
  • Pages: 637

Basic Modern Algebra with Applications

The book is primarily intended as a textbook on modern algebra for undergraduate mathematics students. It is also useful for those who are interested in supplementary reading at a higher level. The text is designed in such a way that it encourages independent thinking and motivates students towards further study. The book covers all major topics in group, ring, vector space and module theory that are usually contained in a standard modern algebra text. In addition, it studies semigroup, group action, Hopf's group, topological groups and Lie groups with their actions, applications of ring theory to algebraic geometry, and defines Zariski topology, as well as applications of module theory to s...

Mathematical and Statistical Applications in Life Sciences and Engineering
  • Language: en
  • Pages: 372

Mathematical and Statistical Applications in Life Sciences and Engineering

  • Type: Book
  • -
  • Published: 2017-12-06
  • -
  • Publisher: Springer

The book includes articles from eminent international scientists discussing a wide spectrum of topics of current importance in mathematics and statistics and their applications. It presents state-of-the-art material along with a clear and detailed review of the relevant topics and issues concerned. The topics discussed include message transmission, colouring problem, control of stochastic structures and information dynamics, image denoising, life testing and reliability, survival and frailty models, analysis of drought periods, prediction of genomic profiles, competing risks, environmental applications and chronic disease control. It is a valuable resource for researchers and practitioners in the relevant areas of mathematics and statistics.

Elements of Homology Theory
  • Language: en
  • Pages: 418

Elements of Homology Theory

The book is a continuation of the previous book by the author (Elements of Combinatorial and Differential Topology, Graduate Studies in Mathematics, Volume 74, American Mathematical Society, 2006). It starts with the definition of simplicial homology and cohomology, with many examples and applications. Then the Kolmogorov-Alexander multiplication in cohomology is introduced. A significant part of the book is devoted to applications of simplicial homology and cohomology to obstruction theory, in particular, to characteristic classes of vector bundles. The later chapters are concerned with singular homology and cohomology, and Cech and de Rham cohomology. The book ends with various applications of homology to the topology of manifolds, some of which might be of interest to experts in the area. The book contains many problems; almost all of them are provided with hints or complete solutions.

Introduction to Topological Groups
  • Language: en
  • Pages: 224

Introduction to Topological Groups

Concise treatment covers semitopological groups, locally compact groups, Harr measure, and duality theory and some of its applications. The volume concludes with a chapter that introduces Banach algebras. 1966 edition.

Basic Algebraic Topology
  • Language: en
  • Pages: 551

Basic Algebraic Topology

  • Type: Book
  • -
  • Published: 2016-02-03
  • -
  • Publisher: CRC Press

Building on rudimentary knowledge of real analysis, point-set topology, and basic algebra, Basic Algebraic Topology provides plenty of material for a two-semester course in algebraic topology. The book first introduces the necessary fundamental concepts, such as relative homotopy, fibrations and cofibrations, category theory, cell complexes, and simplicial complexes. It then focuses on the fundamental group, covering spaces and elementary aspects of homology theory. It presents the central objects of study in topology visualization: manifolds. After developing the homology theory with coefficients, homology of the products, and cohomology algebra, the book returns to the study of manifolds, ...

A Course in Simple-Homotopy Theory
  • Language: en
  • Pages: 116

A Course in Simple-Homotopy Theory

This book grew out of courses which I taught at Cornell University and the University of Warwick during 1969 and 1970. I wrote it because of a strong belief that there should be readily available a semi-historical and geo metrically motivated exposition of J. H. C. Whitehead's beautiful theory of simple-homotopy types; that the best way to understand this theory is to know how and why it was built. This belief is buttressed by the fact that the major uses of, and advances in, the theory in recent times-for example, the s-cobordism theorem (discussed in §25), the use of the theory in surgery, its extension to non-compact complexes (discussed at the end of §6) and the proof of topological in...

Quantum Topology
  • Language: en
  • Pages: 375

Quantum Topology

This book constitutes a review volume on the relatively new subject of Quantum Topology. Quantum Topology has its inception in the 1984/1985 discoveries of new invariants of knots and links (Jones, Homfly and Kauffman polynomials). These invariants were rapidly connected with quantum groups and methods in statistical mechanics. This was followed by Edward Witten's introduction of methods of quantum field theory into the subject and the formulation by Witten and Michael Atiyah of the concept of topological quantum field theories.This book is a review volume of on-going research activity. The papers derive from talks given at the Special Session on Knot and Topological Quantum Field Theory of the American Mathematical Society held at Dayton, Ohio in the fall of 1992. The book consists of a self-contained article by Kauffman, entitled Introduction to Quantum Topology and eighteen research articles by participants in the special session.This book should provide a useful source of ideas and results for anyone interested in the interface between topology and quantum field theory.

Micro-Electronics and Telecommunication Engineering
  • Language: en
  • Pages: 735

Micro-Electronics and Telecommunication Engineering

This book presents selected papers from the 3rd International Conference on Micro-Electronics and Telecommunication Engineering, held at SRM Institute of Science and Technology, Ghaziabad, India, on 30-31 August 2019. It covers a wide variety of topics in micro-electronics and telecommunication engineering, including micro-electronic engineering, computational remote sensing, computer science and intelligent systems, signal and image processing, and information and communication technology.

Topology
  • Language: en
  • Pages: 309

Topology

  • Type: Book
  • -
  • Published: 2015-06-19
  • -
  • Publisher: Springer

This is an introductory textbook on general and algebraic topology, aimed at anyone with a basic knowledge of calculus and linear algebra. It provides full proofs and includes many examples and exercises. The covered topics include: set theory and cardinal arithmetic; axiom of choice and Zorn's lemma; topological spaces and continuous functions; connectedness and compactness; Alexandrov compactification; quotient topologies; countability and separation axioms; prebasis and Alexander's theorem; the Tychonoff theorem and paracompactness; complete metric spaces and function spaces; Baire spaces; homotopy of maps; the fundamental group; the van Kampen theorem; covering spaces; Brouwer and Borsuk's theorems; free groups and free product of groups; and basic category theory. While it is very concrete at the beginning, abstract concepts are gradually introduced. It is suitable for anyone needing a basic, comprehensive introduction to general and algebraic topology and its applications.