You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Neutrosophic set theory was initiated as a method to handle indeterminate uncertain data. It is identified via three independent memberships represent truth T, indeterminate I and falsity F membership degrees of an element. As a generalization of neutrosophic set theory, Q-neutrosophic set theory was established as a new hybrid model that keeps the features of Q-fuzzy soft sets which handle two-dimensional information and the features of neutrosophic soft sets in dealing with uncertainty. Different extensions of fuzzy sets have been already implemented to several algebraic structures, such as groups, symmetric groups, rings and lie algebras. Group theory is one of the most essential algebrai...
A neutrosophic set was proposed as an approach to study neutral uncertain information. It is characterized through three memberships, T, I and F, such that these independent functions stand for the truth, indeterminate, and false-membership degrees of an object. The neutrosophic set presents a symmetric form since truth enrolment T is symmetric to its opposite false enrolment F with respect to indeterminacy enrolment I that acts as an axis of symmetry. The neutrosophic set was further extended to a Q-neutrosophic soft set, which is a hybrid model that keeps the features of the neutrosophic soft set in dealing with uncertainty, and the features of a Q-fuzzy soft set that handles two-dimensional information. In this study, we discuss some operations of Q-neutrosophic soft sets, such as subset, equality, complement, intersection, union, AND operation, and OR operation.
Neutrosophic triplet structure yields a symmetric property of truth membership on the left, indeterminacy membership in the centre and false membership on the right, as do points of object, centre and image of reflection. As an extension of a neutrosophic set, the Q-neutrosophic set was introduced to handle two-dimensional uncertain and inconsistent situations. We extend the soft expert set to generalized Q-neutrosophic soft expert set by incorporating the idea of soft expert set to the concept of Q-neutrosophic set and attaching the parameter of fuzzy set while defining a Q-neutrosophic soft expert set. This pattern carries the benefits of Q-neutrosophic sets and soft sets, enabling decisio...
In this study, the tools that measure the similarity, distance and the degree of fuzziness of Q-neutrosophic soft sets are presented. The definitions of distance, similarity and measures of entropy are introduced. Some formulas for Q-neutrosophic soft entropy were presented. The known Hamming, Euclidean and their normalized distances are generalized to make them well matched with the idea of Q-neutrosophic soft set. The distance measure is subsequently used to define the measure of similarity. Lastly, we expound three applications of the measures of Q-neutrosophic soft sets by applying entropy and the similarity measure to a medical diagnosis and decision making problems.
In this paper, we introduce the notion of Q-neutrosophic soft rings and discuss some of its related properties. Next, we discuss the cartesian product of Q-neutrosophic soft rings and homomorphic images and preimages of Q-neutrosophic soft rings. Moreover, Q-neutrosophic soft ideals are defined and some of their related properties are explored.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Parameter Reduction of Neutrosophic Soft Sets and Their Applications, Geometric Programming (NGP) Problems Subject to (⋁,.) Operator; the Minimum Solution, Ngpr Homeomorphism in Neutrosophic Topological Spaces, Generalized Neutrosophic Separation Axioms in Neutrosophic Soft Topological Spaces.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles from this issue: BMBJ-neutrosophic ideals in BCK/BCI-algebras, Neutrosophic General Finite Automata, Generalized Neutrosophic Exponential map, Implementation of Neutrosophic Function Memberships Using MATLAB Program.
Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (,