You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Estimation of Stochastic Processes is intended for researchers in the field of econometrics, financial mathematics, statistics or signal processing. This book gives a deep understanding of spectral theory and estimation techniques for stochastic processes with stationary increments. It focuses on the estimation of functionals of unobserved values for stochastic processes with stationary increments, including ARIMA processes, seasonal time series and a class of cointegrated sequences. Furthermore, this book presents solutions to extrapolation (forecast), interpolation (missed values estimation) and filtering (smoothing) problems based on observations with and without noise, in discrete and continuous time domains. Extending the classical approach applied when the spectral densities of the processes are known, the minimax method of estimation is developed for a case where the spectral information is incomplete and the relations that determine the least favorable spectral densities for the optimal estimations are found.
The problem of forecasting future values of economic and physical processes, the problem of restoring lost information, cleaning signals or other data observations from noise, is magnified in an information-laden word. Methods of stochastic processes estimation depend on two main factors. The first factor is construction of a model of the process being investigated. The second factor is the available information about the structure of the process under consideration. In this book, we propose results of the investigation of the problem of mean square optimal estimation (extrapolation, interpolation, and filtering) of linear functionals depending on unobserved values of stochastic sequences an...
Estimation of Stochastic Processes is intended for researchers in the field of econometrics, financial mathematics, statistics or signal processing. This book gives a deep understanding of spectral theory and estimation techniques for stochastic processes with stationary increments. It focuses on the estimation of functionals of unobserved values for stochastic processes with stationary increments, including ARIMA processes, seasonal time series and a class of cointegrated sequences. Furthermore, this book presents solutions to extrapolation (forecast), interpolation (missed values estimation) and filtering (smoothing) problems based on observations with and without noise, in discrete and continuous time domains. Extending the classical approach applied when the spectral densities of the processes are known, the minimax method of estimation is developed for a case where the spectral information is incomplete and the relations that determine the least favorable spectral densities for the optimal estimations are found.
None
The problem of forecasting future values of economic and physical processes, the problem of restoring lost information, cleaning signals or other data observations from noise, is magnified in an information-laden word. Methods of stochastic processes estimation depend on two main factors. The first factor is construction of a model of the process being investigated. The second factor is the available information about the structure of the process under consideration. In this book, we propose results of the investigation of the problem of mean square optimal estimation (extrapolation, interpolation, and filtering) of linear functionals depending on unobserved values of stochastic sequences an...
None
Revista da propriedade industrial.
An important resource that provides an overview of mathematical modelling Mathematical Modelling offers a comprehensive guide to both analytical and computational aspects of mathematical modelling that encompasses a wide range of subjects. The authors provide an overview of the basic concepts of mathematical modelling and review the relevant topics from differential equations and linear algebra. The text explores the various types of mathematical models, and includes a range of examples that help to describe a variety of techniques from dynamical systems theory. The book’s analytical techniques examine compartmental modelling, stability, bifurcation, discretization, and fixed-point analysi...
A resource for probability AND random processes, with hundreds ofworked examples and probability and Fourier transform tables This survival guide in probability and random processes eliminatesthe need to pore through several resources to find a certainformula or table. It offers a compendium of most distributionfunctions used by communication engineers, queuing theoryspecialists, signal processing engineers, biomedical engineers,physicists, and students. Key topics covered include: * Random variables and most of their frequently used discrete andcontinuous probability distribution functions * Moments, transformations, and convergences of randomvariables * Characteristic, generating, and mome...