You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents Proceedings of the 2021 Intelligent Systems Conference which is a remarkable collection of chapters covering a wider range of topics in areas of intelligent systems and artificial intelligence and their applications to the real world. The conference attracted a total of 496 submissions from many academic pioneering researchers, scientists, industrial engineers, and students from all around the world. These submissions underwent a double-blind peer-review process. Of the total submissions, 180 submissions have been selected to be included in these proceedings. As we witness exponential growth of computational intelligence in several directions and use of intelligent systems in everyday applications, this book is an ideal resource for reporting latest innovations and future of AI. The chapters include theory and application on all aspects of artificial intelligence, from classical to intelligent scope. We hope that readers find the book interesting and valuable; it provides the state-of-the-art intelligent methods and techniques for solving real-world problems along with a vision of the future research.
The future of agriculture greatly depends on our ability to enhance productivity without sacrificing long-term production potential. The application of microorganisms, such as the diverse bacterial species of plant growth promoting rhizobacteria (PGPR), represents an ecologically and economically sustainable strategy. The use of these bio-resources for the enhancement of crop productivity is gaining importance worldwide. Bacteria in Agrobiology: Crop Productivity focus on the role of beneficial bacteria in crop growth, increased nutrient uptake and mobilization, and defense against phytopathogens. Diverse group of agricultural crops and medicinal plants are described as well as PGPR-mediated bioremediation leading to food security.
Reconceptualises the general meeting, controlling shareholders and institutional investors as fiduciaries in four leading common law Asian jurisdictions.
Increasing agro productivity to feed a growing global population under the present climate scenario requires optimizing the use of resources and adopting sustainable agricultural production. This can be achieved by using plant beneficial bacteria, i.e., those bacteria that enhance plant growth under abiotic stress conditions, and more specifically, microorganisms such as plant growth promoting rhizobacteria (PGPR), which are the most promising candidates in this regard. Attaining sustainable agricultural production while preserving environmental quality, agro-ecosystem functions and biodiversity represents a major challenge for current agricultural practices; further, the traditional use of ...
Plants form mutualistic association with various microorganisms, particularly in the rhizosphere region. The association benefits both the partners in a number of ways. A single plant can support the growth of diverse microbes and in reciprocation these microbes help the plant in several ways. A great deal of knowledge is now available on the mechanisms of action of plant growth promoting microbes in forming association with their partner plant and benefitting it. With ever increasing population and to achieve food security it has become utmost necessary to utilize these friendly microbes to enhance the crop yield and quality in an ecofriendly and sustainable manner. We already know about th...
Microorganisms are ubiquitous on earth. These microorganisms are able to perform various functions in the environment. Microbial applications are used as biofertilizers, bioremediation, biofortification and other sustainable approaches of environmental development. Indigenous microbial cultures have the potential to perform various functions that are beneficial to achieve the sustainable goals. To date, different strains have been commercialized for the industrial and common applications for the sustainable environment. This book will cover different aspects of microbial technology for sustainable development.
In the recent years, the looming food scarcity problem has highlighted plant sciences as an emerging discipline committed to devise new strategies for enhanced crop productivity. The major factors causing food scarcity are biotic and abiotic stresses such as plant pathogens, salinity, drought, flooding, nutrient deficiency or toxicity which substantially limit crop productivity world-wide. In this scenario, strategies should be adopted to achieve maximum productivity and economic crop returns. In this book we have mainly focused on physiological, biochemical, molecular and genetic bases of crop development and related approaches that can be used for crop improvement under environmental adversaries. In addition, the adverse effects of different biotic (diseases, pathogens etc.) and abiotic (salinity, drought, high temperatures, metals etc) stresses on crop development and the potential strategies to enhance crop productivity under stressful environments are also discussed.
This book contains information on solutions to soil, water and environmental issues. The deterioration of fertile soil, fresh, clean water, and hygienic and green environments for many reasons have created concerns among the scientific community. Soil, water and the environment are threatened by chemical applications (pesticides and fertilizers, for example), natural disasters (erosion, volcanic eruptions, etc.) and other anthropogenic activities (GHG emission, deforestation, urbanization, and more). Life is dependent on these resources. If the soil is lost, from where can we produce food? If water is lost, how will life persist? If the environment is not clean, how will living beings (humans, animals and birds) survive? This book demonstrates critical thinking about how we might save these precious resources.
Global industrial growth has resulted in numerous pollutants being introduced into the environment. It has additionally caused decreased water availability for agricultural activity in developing countries, which, in turn, has compelled farmers to use wastewater irrigation. In advanced agricultural systems, farmers are adapting various strategies to achieve a higher yield and thus sustain crop productivity. Consequent to the introduction of contaminants in the environment, soil pollutants have become a critical issue. Selection of disease-resistant, high-yielding crop varieties, and extensive fertilizer applications are quite common among farming communities. This book provides insight into environmental pollutants with special reference to their interference with plant nutrition. It additionally discusses the physiological aspects of plant nutrition. This book enhances current knowledge of the effects of pollutants on plant growth and physiology.