Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Design and Experimental Investigation of a Second Harmonic 20 kW Class 28 GHz Gyrotron for Evaluation of New Emitter Technologies
  • Language: en
  • Pages: 162

Design and Experimental Investigation of a Second Harmonic 20 kW Class 28 GHz Gyrotron for Evaluation of New Emitter Technologies

Gyrotrons are high-power mm-wave tubes. Here, the design, construction and experimental investigation of a 20 kW, 28 GHz gyrotron (2nd harmonic) are reported. This tube was designed to evaluate new emitters for future highly efficient and reliable fusion gyrotrons and for material processing applications. Following experimental results have been achieved in CW operation: 22.5 kW output power at 23.4 kV electron beam voltage and 2.23 A beam current with the world record efficiency of 43 %.

Systematic Study of Key Components for a Coaxial-Cavity Gyrotron for DEMO
  • Language: en
  • Pages: 274

Systematic Study of Key Components for a Coaxial-Cavity Gyrotron for DEMO

The physical design of cavity and magnetron injection gun (MIG) for a realistic, DEMO-compatible, coaxial-cavity 238 GHz 2 MW CW fusion gyrotron is developed in this work, having auxiliary frequencies at 170 GHz and 204 GHz. Novel systematic approaches towards multi-frequency mode selection, magnet requirements, and MIG design are presented. Mode deterioration and voltage depression variation due to insert misalignment versus cavity wall and/or versus electron beam are studied.

New Type of sub-THz Oscillator and Amplifier Systems Based on Helical-Type Gyro-TWTs
  • Language: en
  • Pages: 322

New Type of sub-THz Oscillator and Amplifier Systems Based on Helical-Type Gyro-TWTs

This work presents the development of a new sub-THz source for the generation of trains of coherent high-power ultra-short pulses at 263 GHz via passive mode-locking of two coupled helical gyro-TWTs. For the first time, it is shown that the operation of such passive mode-locked helical gyro-TWTs in the hard excitation regime is of particular importance to reach the optimal coherency of the generated pulses. This could be of particular interest for some new time-domain DNP-NMR methods.

A First 2 MW-Class (136)/170/204 GHz Multi-Frequency Gyrotron Pre-Prototype for DEMO: Design, Construction and Key Components Verification
  • Language: en
  • Pages: 258

A First 2 MW-Class (136)/170/204 GHz Multi-Frequency Gyrotron Pre-Prototype for DEMO: Design, Construction and Key Components Verification

Ein Gyrotron wird in magnetisch eingeschlossenen Plasmaexperimenten für Heizung, Stromtrieb, Plasmastabilisierung und Plasmadiagnostik verwendet. In dieser Arbeit wird der erste Entwurf und Bau eines Mehrfrequenz-/Mehrzweck Pre-Prototyp Gyrotrons in koaxialer Technologie vorgestellt, das bei (136)/170/204 GHz mit einer Ausgangsleistung von 2 MW arbeitet. Dies ist der erste Schritt zum Betrieb bei Frequenzen bis zu 240 GHz unter Verwendung der Koaxialhohlraum-Gyrotrontechnologie. - A gyrotron is used in magnetically confined plasma experiments for heating, current drive, plasma stabilization and plasma diagnostics. This work presents the first design and construction of a multi-frequency / multi-purpose coaxial-cavity pre-prototype gyrotron operating at (136)/170/204 GHz with an output power of 2 MW. It is the first step towards operating frequencies up to 240 GHz using the coaxial-cavity gyrotron technology.

Conceptual Studies of Multistage Depressed Collectors for Gyrotrons
  • Language: en
  • Pages: 232
Pushing the KIT 2 MW Coaxial-Cavity Short-Pulse Gyrotron Towards a DEMO Relevant Design
  • Language: en
  • Pages: 190

Pushing the KIT 2 MW Coaxial-Cavity Short-Pulse Gyrotron Towards a DEMO Relevant Design

Magnetic fusion is one approach to generate thermonuclear fusion power in an environmental friendly way. The Electron Cyclotron Resonance Heating is considered as the major concept for startup, heating and control of the fusion plasma. Megawatt-class gyrotrons generate the required microwave power. This work focuses on advanced key components and technologies for a DEMO relevant 2 MW gyrotron. One major focus is on the development of advanced Magnetron Injection Guns. Another focus is on the red

Feasibility and Operational Limits for a 236 GHz Hollow-Cavity Gyrotron for DEMO
  • Language: en
  • Pages: 270

Feasibility and Operational Limits for a 236 GHz Hollow-Cavity Gyrotron for DEMO

The DEMOnstration fusion power plant (DEMO) will be the first fusion reactor, which is intended to generate net electrical power. For successful operation of DEMO, high-power gyrotrons with operating frequencies up to 240 GHz are required for plasma heating and stabilization. In this work, a systematic feasibility study and tolerance analysis are performed for the conventional-type hollow-cavity DEMO gyrotrons. The various approaches are also suggested to identify its operational limits.

Automated Mode Recovery and Electronic Stability Control for Wendelstein 7-X Gyrotrons
  • Language: en
  • Pages: 272

Automated Mode Recovery and Electronic Stability Control for Wendelstein 7-X Gyrotrons

Magnetic confinement fusion relies on plasma heating and plasma control using gyrotron oscillators providing at megawatt power levels. The operational reliability decreases when operating at the performance limits due to increasing parasitic mode activity. This work demonstrates for the first time the automated, fast recovery of nominal gyrotron operation during a pulse by exploiting the hysteretic gyrotron behaviour after a mode switch being in use at the Wendelstein 7-X ECRH facility.

MultPhysics Modelling towards the Stabilization of PAN Fibers with Microwaves Based on Experimental Data
  • Language: en
  • Pages: 174

MultPhysics Modelling towards the Stabilization of PAN Fibers with Microwaves Based on Experimental Data

High energy demand is one reason for high costs of carbon fibers. One option to decrease them is to use microwave heating instead of conventional heating. In this work, steps towards a microwave assisted process during the stabilization phase are presented. In-situ dielectric measurements are performed and a reaction kinetics model is setup in connection to the dielectric loss. This allows to calculate a stabilization degree and fiber temperatures leading to a basic process understanding.

A high-voltage pulsed power modulator for fast-rising arbitrary waveforms
  • Language: en
  • Pages: 198