Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Topology of Manifolds
  • Language: en
  • Pages: 534

Topology of Manifolds

  • Type: Book
  • -
  • Published: 1970
  • -
  • Publisher: Unknown

None

An Introduction to Manifolds
  • Language: en
  • Pages: 426

An Introduction to Manifolds

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for furthe...

Introduction to Smooth Manifolds
  • Language: en
  • Pages: 646

Introduction to Smooth Manifolds

Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why

Structures On Manifolds
  • Language: en
  • Pages: 520

Structures On Manifolds

Contents: Riemannian ManifoldsSubmanifolds of Riemannian ManifoldsComplex ManifoldsSubmanifolds of Kaehlerian ManifoldsContact ManifoldsSubmanifolds of Sasakian Manifoldsf-StructuresProduct ManifoldsSubmersions Readership: Mathematicians. Keywords:Riemannian Manifold;Submanifold;Complex Manifold;Contact Manifold;Kaehlerian Manifold;Sasakian Manifold;Anti-Invariant Submanifold;CR Submanifold;Contact CR Submanifold;Submersion

Differentiable Manifolds
  • Language: en
  • Pages: 280

Differentiable Manifolds

This textbook delves into the theory behind differentiable manifolds while exploring various physics applications along the way. Included throughout the book are a collection of exercises of varying degrees of difficulty. Differentiable Manifolds is intended for graduate students and researchers interested in a theoretical physics approach to the subject. Prerequisites include multivariable calculus, linear algebra, and differential equations and a basic knowledge of analytical mechanics.

Differential Geometry of Manifolds
  • Language: en
  • Pages: 430

Differential Geometry of Manifolds

  • Type: Book
  • -
  • Published: 2010-06-11
  • -
  • Publisher: CRC Press

From the coauthor of Differential Geometry of Curves and Surfaces, this companion book presents the extension of differential geometry from curves and surfaces to manifolds in general. It provides a broad introduction to the field of differentiable and Riemannian manifolds, tying together the classical and modern formulations. The three appendices

An Introduction To Differential Manifolds
  • Language: en
  • Pages: 231

An Introduction To Differential Manifolds

This invaluable book, based on the many years of teaching experience of both authors, introduces the reader to the basic ideas in differential topology. Among the topics covered are smooth manifolds and maps, the structure of the tangent bundle and its associates, the calculation of real cohomology groups using differential forms (de Rham theory), and applications such as the Poincaré-Hopf theorem relating the Euler number of a manifold and the index of a vector field. Each chapter contains exercises of varying difficulty for which solutions are provided. Special features include examples drawn from geometric manifolds in dimension 3 and Brieskorn varieties in dimensions 5 and 7, as well as detailed calculations for the cohomology groups of spheres and tori.

Introduction to Topological Manifolds
  • Language: en
  • Pages: 395

Introduction to Topological Manifolds

Manifolds play an important role in topology, geometry, complex analysis, algebra, and classical mechanics. Learning manifolds differs from most other introductory mathematics in that the subject matter is often completely unfamiliar. This introduction guides readers by explaining the roles manifolds play in diverse branches of mathematics and physics. The book begins with the basics of general topology and gently moves to manifolds, the fundamental group, and covering spaces.

Tensor Analysis on Manifolds
  • Language: en
  • Pages: 290

Tensor Analysis on Manifolds

DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div

Differential Manifolds
  • Language: en
  • Pages: 290

Differential Manifolds

Introductory text for advanced undergraduates and graduate students presents systematic study of the topological structure of smooth manifolds, starting with elements of theory and concluding with method of surgery. 1993 edition.