You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Our future scientists and professionals must be conversant in computational techniques. In order to facilitate integration of computer methods into existing physics courses, this textbook offers a large number of worked examples and problems with fully guided solutions in Python as well as other languages (Mathematica, Java, C, Fortran, and Maple). It’s also intended as a self-study guide for learning how to use computer methods in physics. The authors include an introductory chapter on numerical tools and indication of computational and physics difficulty level for each problem. Readers also benefit from the following features: • Detailed explanations and solutions in various coding lan...
Computational physics is a rapidly growing subfield of computational science, in large part because computers can solve previously intractable problems or simulate natural processes that do not have analytic solutions. The next step beyond Landau's First Course in Scientific Computing and a follow-up to Landau and Páez's Computational Physics, this text presents a broad survey of key topics in computational physics for advanced undergraduates and beginning graduate students, including new discussions of visualization tools, wavelet analysis, molecular dynamics, and computational fluid dynamics. By treating science, applied mathematics, and computer science together, the book reveals how this knowledge base can be applied to a wider range of real-world problems than computational physics texts normally address. Designed for a one- or two-semester course, A Survey of Computational Physics will also interest anyone who wants a reference on or practical experience in the basics of computational physics. Accessible to advanced undergraduates Real-world problem-solving approach Java codes and applets integrated with text Companion Web site includes videos of lectures
The use of computation and simulation has become an essential part of the scientific process. Being able to transform a theory into an algorithm requires significant theoretical insight, detailed physical and mathematical understanding, and a working level of competency in programming. This upper-division text provides an unusually broad survey of the topics of modern computational physics from a multidisciplinary, computational science point of view. Its philosophy is rooted in learning by doing (assisted by many model programs), with new scientific materials as well as with the Python programming language. Python has become very popular, particularly for physics education and large scienti...
This second edition increases the universality of the previous edition by providing all its codes in the Java language, whose compiler and development kit are available for free for essentially all operating systems. In addition, the accompanying CD provides many of the same codes in Fortran 95, Fortran 77, and C, for even more universal application, as well as MPI codes for parallel applications. The book also includes new materials on trial-and-error search techniques, IEEE floating point arithmetic, probability and statistics, optimization and tuning in multiple languages, parallel computing with MPI, JAMA the Java matrix library, the solution of simultaneous nonlinear equations, cubic splines, ODE eigenvalue problems, and Java plotting programs. From the reviews of the first edition: "Landau and Paez's book would be an excellent choice for a course on computational physics which emphasizes computational methods and programming." - American Journal of Physics
This book explains the fundamentals of computational physics and describes the techniques that every physicist should know, such as finite difference methods, numerical quadrature, and the fast Fourier transform. The book offers a complete introduction to the topic at the undergraduate level, and is also suitable for the advanced student or researcher. The book begins with an introduction to Python, then moves on to a step-by-step description of the techniques of computational physics, with examples ranging from simple mechanics problems to complex calculations in quantum mechanics, electromagnetism, statistical mechanics, and more.
This book comprises a selection of the top contributions presented at the second international conference “Smart and Sustainable Planning for Cities and Regions 2017”, held in March 2017 in Bolzano, Italy. Featuring forty-six papers by policy-makers, academics and consultants, it discusses current groundbreaking research in smart and sustainable planning, including the progress made in overcoming cities’ challenges towards improving the quality of life. Climate change adaptation and mitigation of global warming, generally identified as drivers of global policies, are just the “tip of the iceberg” when it comes to smart energy transition. Indeed, equally relevant towards this current transformation – and key topics in this volume – are ICTs, public spaces and society; next economy for the city; strategies and actions for good governance; urban-rural innovation; rethinking mobility. The book’s depth in understanding and insightfulness in re-thinking demonstrate the breaking of new ground in smart and sustainable planning. A new ground that policy-makers, academics and consultants may build upon as a bedrock for smart and sustainable planning.
Over the past years, significant changes have occurred in the corporate sector arising from globalization, increasing international competitiveness, and intensive use of information and communication technologies (ICTs). These developments have led to new corporate and social behaviors that are affecting the entire corporate value chain. Thus, business organizations are focusing on technological innovation as a driving force of development. Emerging Tools and Strategies for Financial Management is a pivotal reference source that explores both practical and theoretical perspectives on how financial management is evolving and how future consequences of technological innovation will affect individuals, businesses, and society. While highlighting topics such as financial imbalance, venture capital, and shadow banking, this publication explores the relationship between companies and their customers and the methods of generating changes in today’s enterprises. This book is ideally designed for business managers, financial analysts, financial controllers, directors, finance officers, treasurers, entrepreneurs, CEOs, academicians, students, and research professionals.
This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra - all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently discussed in detail. Based on the author`s modeling and simulation experience in science and enginee...
This book, an abridgment of Volumes I and II of the highly respected Group Theory in Physics, presents a carefully constructed introduction to group theory and its applications in physics. The book provides anintroduction to and description of the most important basic ideas and the role that they play in physical problems. The clearly written text contains many pertinent examples that illustrate the topics, even for those with no background in group theory.This work presents important mathematical developments to theoretical physicists in a form that is easy to comprehend and appreciate. Finite groups, Lie groups, Lie algebras, semi-simple Lie algebras, crystallographic point groups and crystallographic space groups, electronic energy bands in solids, atomic physics, symmetry schemes for fundamental particles, and quantum mechanics are all covered in this compact new edition. - Covers both group theory and the theory of Lie algebras - Includes studies of solid state physics, atomic physics, and fundamental particle physics - Contains a comprehensive index - Provides extensive examples
A groundbreaking conception of interactive media, inspired by continuity, field, and process, with fresh implications for art, computer science, and philosophy of technology. In this challenging but exhilarating work, Sha Xin Wei argues for an approach to materiality inspired by continuous mathematics and process philosophy. Investigating the implications of such an approach to media and matter in the concrete setting of installation- or event-based art and technology, Sha maps a genealogy of topological media—that is, of an articulation of continuous matter that relinquishes a priori objects, subjects, and egos and yet constitutes value and novelty. Doing so, he explores the ethico-aesthe...