Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Arithmetic Geometry of Logarithmic Pairs and Hyperbolicity of Moduli Spaces
  • Language: en
  • Pages: 254

Arithmetic Geometry of Logarithmic Pairs and Hyperbolicity of Moduli Spaces

This textbook introduces exciting new developments and cutting-edge results on the theme of hyperbolicity. Written by leading experts in their respective fields, the chapters stem from mini-courses given alongside three workshops that took place in Montréal between 2018 and 2019. Each chapter is self-contained, including an overview of preliminaries for each respective topic. This approach captures the spirit of the original lectures, which prepared graduate students and those new to the field for the technical talks in the program. The four chapters turn the spotlight on the following pivotal themes: The basic notions of o-minimal geometry, which build to the proof of the Ax–Schanuel con...

Shimura Varieties
  • Language: en
  • Pages: 341

Shimura Varieties

This volume forms the sequel to "On the stabilization of the trace formula", published by International Press of Boston, Inc., 2011

Win-- Women in Numbers
  • Language: en
  • Pages: 298

Win-- Women in Numbers

This volume is a collection of papers on number theory which evolved out of the workshop WIN - Women in Numbers, held November 2nd-7th, 2008, in Alberta, Canada. The book includes articles showcasing outcomes from collaborative research initiated during the workshop.

Lectures on Hilbert Modular Varieties and Modular Forms
  • Language: en
  • Pages: 282

Lectures on Hilbert Modular Varieties and Modular Forms

This book is devoted to certain aspects of the theory of $p$-adic Hilbert modular forms and moduli spaces of abelian varieties with real multiplication. The theory of $p$-adic modular forms is presented first in the elliptic case, introducing the reader to key ideas of N. M. Katz and J.-P. Serre. It is re-interpreted from a geometric point of view, which is developed to present the rudiments of a similar theory for Hilbert modular forms. The theory of moduli spaces of abelianvarieties with real multiplication is presented first very explicitly over the complex numbers. Aspects of the general theory are then exposed, in particular, local deformation theory of abelian varieties in positive characteristic. The arithmetic of $p$-adic Hilbert modular forms and the geometry ofmoduli spaces of abelian varieties are related. This relation is used to study $q$-expansions of Hilbert modular forms, on the one hand, and stratifications of moduli spaces on the other hand. The book is addressed to graduate students and non-experts. It attempts to provide the necessary background to all concepts exposed in it. It may serve as a textbook for an advanced graduate course.

Harmonic Analysis, the Trace Formula, and Shimura Varieties
  • Language: en
  • Pages: 708

Harmonic Analysis, the Trace Formula, and Shimura Varieties

Langlands program proposes fundamental relations that tie arithmetic information from number theory and algebraic geometry with analytic information from harmonic analysis and group representations. This title intends to provide an entry point into this exciting and challenging field.

Hilbert Modular Forms: mod $p$ and $p$-Adic Aspects
  • Language: en
  • Pages: 114

Hilbert Modular Forms: mod $p$ and $p$-Adic Aspects

We study Hilbert modular forms in characteristic $p$ and over $p$-adic rings. In the characteristic $p$ theory we describe the kernel and image of the $q$-expansion map and prove the existence of filtration for Hilbert modular forms; we define operators $U$, $V$ and $\Theta_\chi$ and study the variation of the filtration under these operators. Our methods are geometric - comparing holomorphic Hilbert modular forms with rational functions on a moduli scheme with level-$p$ structure, whose poles are supported on the non-ordinary locus.In the $p$-adic theory we study congruences between Hilbert modular forms. This applies to the study of congruences between special values of zeta functions of totally real fields. It also allows us to define $p$-adic Hilbert modular forms 'a la Serre' as $p$-adic uniform limit of classical modular forms, and compare them with $p$-adic modular forms 'a la Katz' that are regular functions on a certain formal moduli scheme. We show that the two notions agree for cusp forms and for a suitable class of weights containing all the classical ones. We extend the operators $V$ and $\Theta_\chi$ to the $p$-adic setting.

Sage for Undergraduates
  • Language: en
  • Pages: 158

Sage for Undergraduates

As the open-source and free alternative to expensive software like Maple™, Mathematica®, and MATLAB®, Sage offers anyone with a web browser the ability to use cutting-edge mathematical software and share the results with others, often with stunning graphics. This book is a gentle introduction to Sage for undergraduate students during Calculus II, Multivariate Calculus, Differential Equations, Linear Algebra, Math Modeling, or Operations Research. This book assumes no background in programming, but the reader who finishes the book will have learned about 60 percent of a first semester computer science course, including much of the Python programming language. The audience is not only math...

LuCaNT: LMFDB, Computation, and Number Theory
  • Language: en
  • Pages: 386

LuCaNT: LMFDB, Computation, and Number Theory

This book will be published Open Access with a Creative Commons Attribution 4.0 International License (CC BY 4.0). The eBook can be downloaded electronically for free. This volume contains the proceedings of the LuCaNT (LMFDB, Computation, and Number Theory) conference held from July 10–14, 2023, at the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island and affiliated with Brown University. This conference provided an opportunity for researchers, scholars, and practitioners to exchange ideas, share advances, and collaborate in the fields of computation, mathematical databases, number theory, and arithmetic geometry. The papers that appear in this volume record recent advances in these areas, with special focus on the LMFDB (the L-Functions and Modular Forms Database), an online resource for mathematical objects arising in the Langlands program and the connections between them.

Higher Ramanujan Equations and Periods of Abelian Varieties
  • Language: en
  • Pages: 158

Higher Ramanujan Equations and Periods of Abelian Varieties

View the abstract.

1001 Problems in Classical Number Theory
  • Language: en
  • Pages: 358

1001 Problems in Classical Number Theory

None