You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The theory of stochastic processes indexed by a partially ordered set has been the subject of much research over the past twenty years. The objective of this CIME International Summer School was to bring to a large audience of young probabilists the general theory of spatial processes, including the theory of set-indexed martingales and to present the different branches of applications of this theory, including stochastic geometry, spatial statistics, empirical processes, spatial estimators and survival analysis. This theory has a broad variety of applications in environmental sciences, social sciences, structure of material and image analysis. In this volume, the reader will find different approaches which foster the development of tools to modelling the spatial aspects of stochastic problems.
This volume presents an extensive overview of all major modern trends in applications of probability and stochastic analysis. It will be a great source of inspiration for designing new algorithms, modeling procedures and experiments. Accessible to researchers, practitioners, as well as graduate and postgraduate students, this volume presents a variety of new tools, ideas and methodologies in the fields of optimization, physics, finance, probability, hydrodynamics, reliability, decision making, mathematical finance, mathematical physics and economics. Contributions to this Work include those of selected speakers from the international conference entitled “Modern Stochastics: Theory and Applications III,” held on September 10 –14, 2012 at Taras Shevchenko National University of Kyiv, Ukraine. The conference covered the following areas of research in probability theory and its applications: stochastic analysis, stochastic processes and fields, random matrices, optimization methods in probability, stochastic models of evolution systems, financial mathematics, risk processes and actuarial mathematics and information security.
The volume includes lecture notes and research papers by participants of the Seventh Symposium on Probability and Stochastic Processes held in Mexico City. The lecture notes introduce recent advances in stochastic calculus with respect to fractional Brownian motion, principles of large deviations and of minimum entropy concerning equilibrium prices in random economic systems, and give a complete and thorough survey of credit risk theory. The research papers cover areas such as financial markets, Gaussian processes, stochastic differential equations, stochastic integration, quantum dynamical semigroups, self-intersection local times, etc. Readers should have a basic background in probability theory, stochastic integration, and stochastic differential equations. The book is suitable for graduate students and research mathematicians interested in probability, stochastic processes, and risk theory.
Self-similar processes are stochastic processes that are invariant in distribution under suitable time scaling, and are a subject intensively studied in the last few decades. This book presents the basic properties of these processes and focuses on the study of their variation using stochastic analysis. While self-similar processes, and especially fractional Brownian motion, have been discussed in several books, some new classes have recently emerged in the scientific literature. Some of them are extensions of fractional Brownian motion (bifractional Brownian motion, subtractional Brownian motion, Hermite processes), while others are solutions to the partial differential equations driven by fractional noises. In this monograph the author discusses the basic properties of these new classes of self-similar processes and their interrelationship. At the same time a new approach (based on stochastic calculus, especially Malliavin calculus) to studying the behavior of the variations of self-similar processes has been developed over the last decade. This work surveys these recent techniques and findings on limit theorems and Malliavin calculus.
Generative Worlds. New Phenomenological Perspectives on Space and Time accounts for the phenomenological concept of generativity. In doing so, this book brings together several recent phenomenological studies on space and time. Generative studies in phenomenology propose new ways of conceiving space, time, and the relation between them. Edited by Luz Ascarate and Quentin Gailhac, the collection reveals new dimensions to topics such as the generation of life, birth, historicity, intersubjectivity, narrativity, institution, touching, and places, and in some cases, the contributors invert the classical definitions of space and time. These transformative readings are fruitful for the interdisciplinary exchange between philosophy and fields such as cosmology, psychology, and the social sciences. The contributors ask if phenomenology reaches its own concreteness through the study of generation and whether it manages to redefine certain dimensions of space and time which, in other orientations of the Husserlian method, remain too abstract and detached from the constitutive becoming of experience.
This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the corr...
Fractional Brownian Motion (FBM) is a very classical continuous self-similar Gaussian field with stationary increments. In 1940, some works of Kolmogorov on turbulence led him to introduce this quite natural extension of Brownian Motion, which, in contrast with the latter, has correlated increments. However, the denomination FBM is due to a very famous article by Mandelbrot and Van Ness, published in 1968. Not only in it, but also in several of his following works, Mandelbrot emphasized the importance of FBM as a model in several applied areas, and thus he made it to be known by a wide community. Therefore, FBM has been studied by many authors, and used in a lot of applications.In spite of t...
This book is one out of 8 IAEG XII Congress volumes and deals with river basins, which are the focus of many hydraulic engineering and hydrogeological studies worldwide. Such studies examine river systems as both a resource of the fluvial environment, and also explore river-related hazards and risks. The contributions of researchers from different disciplines focus on: surface-groundwater exchanges, stream flow, stream erosion, river morphology and management, sediment transport regimes, debris flows, evaluation of water resources, dam operation and hydropower generation, flood risks and flood control, stream pollution and water quality management. The contributions include case studies for ...