You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Adivasis have principally been studied in the context of rebellion, environmental history and the politics of identity. However, preoccupations with definitions and notions of identity, while important in themselves, tend to shift attention away from the inner lives of these communities. This book deals with different aspects of the histories of adivasi communities -- from Rajasthan in the west to Bengal and Orissa in the east. The essays in this book discuss a range of issues affecting the socio-economic and cultural life of adivasis and explore the long term continuities and discontinuities between different political regimes. They also reflect some of the new concerns that have come up re...
This volume contains papers based on many aspects of electrical and optical properties of organic solids. The papers were presented as lectures and posters at the 9th International Conference on Electrical and Related Properties of Organic Solids held in Prague in July 2002.
This book traces the evolution of Atomic Physics from precision spectroscopy to the manipulation of atoms at a billionth of a degree above absolute zero. Quantum worlds can be simulated and fundamental theories, such as General Relativity and Quantum Electrodynamics, can be tested with table-top experiments.
This book is a study of the concepts of endangerment and extinction. Examining interlinking discourses of biological and cultural diversity loss in western and central India, it problematizes the long history of human endangerment and extinction discourse.
Organic LEDs (OLEDs) in mobile displays have been in large-scale production for over a decade, and OLED-based televisions are rapidly gaining traction in the marketplace. OLEDs are on the verge of entering the solid-state lighting market in a big way. The OLED technology gives higher color purity and is more efficient than any of the competing technologies. When produced at scale, OLEDs are also economical. A key limitation in the development of OLEDs was the efficient conversion of all of the electrical energy put into the device into light. Until the late 1990s, the maximum efficiency of OLEDs was limited to 25% (photons/electrons), but this limitation was removed and OLEDs with 100% efficiency were reported in the early 2000s. This advance in OLED technology was driven by the author of this book. He and his collaborators developed electrophosphorescence, which is essential in reaching the 100% efficiency that is now commonplace in commercial devices.
None
Stretchable electronics is one of the transformative pillars of future flexible electronics. As a result, the research on new passive and active materials, novel designs, and engineering approaches has attracted significant interest. Recent studies have highlighted the importance of new approaches that enable the integration of high-performance materials, including, organic and inorganic compounds, carbon-based and layered materials, and composites to serve as conductors, semiconductors or insulators, with the ability to accommodate electronics on stretchable substrates. This Element presents a discussion about the strategies that have been developed for obtaining stretchable systems, with a focus on various stretchable geometries to achieve strain invariant electrical response, and summarises the recent advances in terms of material research, various integration techniques of high-performance electronics. In addition, some of the applications, challenges and opportunities associated with the development of stretchable electronics are discussed.
Electronic skins are critical for many applications in human-machine-environment interactions. Tactile sensitivity over large areas can be especially applied to prosthetics. Moreover, the potential for wearables, interactive surfaces, and human robotics have propelled research in this area. In this Element, we provide an account and directional atlas of the progress in materials and devices for electronic skins, in the context of sensing principles and skin-like features. Additionally, we give an overview of essential electronic circuits and systems used in large-area tactile sensor arrays. Finally, we present the challenges and provide perspectives on future developments.
Hybrid Systems-in-Foil (HySiF) is a concept that extends the potential of conventional More-than-More Systems-in/on-Package (SiPs and SoPs) to the flexible electronics world. In HySiF, an economical implementation of flexible electronic systems is possible by integrating a minimum number of embedded silicon chips and a maximum number of on-foil components. Here, the complementary characteristics of CMOS SoCs and larger area organic and printed electronics are combined in a HySiF-compatible polymeric substrate. Within the HySiF scope, the fabrication process steps and the integration design rules with all the accompanying boundary conditions concerning material compatibility, surface properties, and thermal budget, are defined. This Element serves as an introduction to the HySiF concept. A summary of recent ultra-thin chip fabrication and flexible packaging techniques is provided. Several bendable electronic components are presented demonstrating the benefits of HySiF. Finally, prototypes of flexible wireless sensor systems that adopt the HySiF concept are demonstrated.