You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Nanomaterials and nanostructures are the original product of nanotechnology, and the key building blocks for enabling technologies. In this context, this book presents a concise overview of the synthesis and characterization methods of nanomaterials and nanostructures, while integrating facets of physics, chemistry, and engineering. The book summarizes the fundamentals and technical approaches in synthesis, and processing of nanostructures and nanomaterials, so as the reader can have a systematic and quick picture of the field. This book focuses on functional aspects of nanomaterials that have a high relevance to immediate applications, such as catalysis, energy harvesting, biosensing, and surface functionalization. There are chapters addressing nanostructured materials and composites and covering basic properties and requirements of this new class of engineered materials.
In the last few years, several “bottom-up” and “top-down” synthesis routes have been developed to produce tailored hybrid nanoparticles (HNPs). This book provides a new insight into one of the most promising “bottom-up” techniques, based on a practical magnetron-sputtering inert-gas-condensation method. A modified magnetron-sputtering-based inert-gas-condensation (MS-IGC) system is presented, and its performances under different conditions are evaluated. Designed for graduate students, researchers in physics, materials science, biophysics and related fields, and process engineers, this new resource fills a critical need to understand the fundamentals behind the design and tailori...
Nanostructured Thin Films: Fundamentals and Applications presents an overview of the synthesis and characterization of thin films and their nanocomposites. Both vapor phase and liquid phase approaches are discussed, along with the methods that are sufficiently attractive for large-scale production. Examples of applications in clean energy, sensors, biomedicine, anticorrosion and surface modification are also included. As the applications of thin films in nanomedicine, cell phones, solar cell-powered devices, and in the protection of structural materials continues to grow, this book presents an important research reference for anyone seeking an informed overview on their structure and applications. - Shows how thin films are being used to create more efficient devices in the fields of medicine and energy harvesting - Discusses how to alter the design of nanostructured thin films by vapor phase and liquid phase methods - Explores how modifying the structure of thin films for specific applications enhances their performance
Cluster Beam Deposition of Functional Nanomaterials and Devices, Volume 15, provides up-to-date information on the CBD of novel nanomaterials and devices. The book offers an overview of gas phase synthesis in a range of nanoparticles, along with discussions on the development of several devices and applications. Applications include, but are not limited to catalysis, smart nanocomposites, nanoprobes, electronic devices, gas sensors and biosensors. This is an important reference source for materials scientists and engineers who want to learn more about this sustainable, innovative manufacturing technology.
In the last few years, several “bottom-up” and “top-down” synthesis routes have been developed to produce tailored hybrid nanoparticles (HNPs). This book provides a new insight into one of the most promising “bottom-up” techniques, based on a practical magnetron-sputtering inert-gas-condensation method. A modified magnetron-sputtering-based inert-gas-condensation (MS-IGC) system is presented, and its performances under different conditions are evaluated. Designed for graduate students, researchers in physics, materials science, biophysics and related fields, and process engineers, this new resource fills a critical need to understand the fundamentals behind the design and tailori...
Colloids for Nanobiotechnology: Synthesis, Characterization and Potential Applications, Volume 17, offers a range of perspectives on emerging nano-inspired colloidal applications. With an emphasis on biomedical and environmental opportunities and challenges, the book outlines how nanotechnology is being used to increase the uses and impact of colloid science. Nanotechnology offers new horizons for colloidal research and synthesis routes that allow for the production of highly reproducible and defined materials. This book presents new characterization methods and a fundamental understanding of basic physicochemical, physical and chemical properties. Explores the use of nanotechnology in enhancing colloidal characterization techniques Explains how colloids are being used in a range of nanomedical applications Demonstrates how nanotechnology is being used to create more efficient colloidal synthesis techniques
Nanoscale Electrochemistry focuses on challenges and advances in electrochemical nanoscience at solid–liquid interfaces, highlighting the most prominent developments of the last decade. Nanotechnology has had a tremendous effect on the multidisciplinary field of electrochemistry, yielding new fundamental insights that have broadened our understanding of interfacial processes and stimulating new and diverse applications. The book begins with a tutorial chapter to introduce the principles of nanoscale electrochemical systems and emphasize their unique behavior compared with their macro/microscopic counterparts. Building on this, the following three chapters present analytical applications, s...
Fundamentals of Nanoparticles: Classifications, Synthesis Methods, Properties and Characterization explores the nanoparticles and architecture of nanostructured materials being used today in a comprehensive, detailed manner. This book focuses primarily on the characterization, properties and synthesis of nanoscale materials, and is divided into three major parts. This is a valuable reference for materials scientists, and chemical and mechanical engineers working in R&D and academia, who want to learn more about how nanoparticles and nanomaterials are characterized and engineered. Part one covers nanoparticles formation, self-assembly in the architecture nanostructures, types and classificati...
Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends discusses the most important current applications of nanoparticles and architecture nanostructures in a comprehensive, detailed manner. The book covers major applications of nanoparticles and architecture nanostructures, taking into account their unusual shapes and high surface areas. In particular, coverage is given to applications in aerospace, automotive, batteries, sensors, smart textile design, energy conversion, color imaging, printing, computer chips, medical implants, pharmacy, cosmetics, and more. In addition, the book discusses the future of research in these areas. This is a...
In this new handbook, top researchers from around the world discuss recent academic and industrial advances in designing ceramic coatings and materials. They describe the role of nanotechnology in designing high performance nanoceramic coatings and materials in terms of the unique advantages that can be gained from the nano scale, including the latest techniques for the synthesis and processing of ceramic and composite coatings for different applications. - Focuses on the most advanced technologies for industry-oriented nano-ceramic and nano-composite coatings, including recent challenges for scaling up nano-based coatings in industry - Covers the latest evaluation methods for measuring coatings performance - Discusses novel approaches for improving the performance of ceramic and composite coatings and materials via nanotechnology - Provides the most recent and advanced techniques for surface characterization