You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The papers were elicited primarily from Mathematics for Industry: Challenges and Frontiers, a conference sponsored by SIAM in October, 2003.
Curves and Surfaces provides information pertinent to the fundamental aspects of approximation theory with emphasis on approximation of images, surface compression, wavelets, and tomography. This book covers a variety of topics, including error estimates for multiquadratic interpolation, spline manifolds, and vector spline approximation. Organized into 77 chapters, this book begins with an overview of the method, based on a local Taylor expansion of the final curve, for computing the parameter values. This text then presents a vector approximation based on general spline function theory. Other chapters consider a nonparametric technique for estimating under random censorship the amplitude of a change point in change point hazard models. This book discusses as well the algorithm for ray tracing rational parametric surfaces based on inversion and implicitization. The final chapter deals with the results concerning the norm of the interpolation operator and error estimates for a square domain. This book is a valuable resource for mathematicians.
These proceedings were prepared in connection with the international conference Approximation Theory XIII, which was held March 7–10, 2010 in San Antonio, Texas. The conference was the thirteenth in a series of meetings in Approximation Theory held at various locations in the United States, and was attended by 144 participants. Previous conferences in the series were held in Austin, Texas (1973, 1976, 1980, 1992), College Station, Texas (1983, 1986, 1989, 1995), Nashville, Tennessee (1998), St. Louis, Missouri (2001), Gatlinburg, Tennessee (2004), and San Antonio, Texas (2007). Along with the many plenary speakers, the contributors to this proceedings provided inspiring talks and set a high standard of exposition in their descriptions of new directions for research. Many relevant topics in approximation theory are included in this book, such as abstract approximation, approximation with constraints, interpolation and smoothing, wavelets and frames, shearlets, orthogonal polynomials, univariate and multivariate splines, and complex approximation.
These proceedings are based on the international conference Approximation Theory XVI held on May 19–22, 2019 in Nashville, Tennessee. The conference was the sixteenth in a series of meetings in Approximation Theory held at various locations in the United States. Over 130 mathematicians from 20 countries attended. The book contains two longer survey papers on nonstationary subdivision and Prony’s method, along with 11 research papers on a variety of topics in approximation theory, including Balian-Low theorems, butterfly spline interpolation, cubature rules, Hankel and Toeplitz matrices, phase retrieval, positive definite kernels, quasi-interpolation operators, stochastic collocation, the gradient conjecture, time-variant systems, and trivariate finite elements. The book should be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.
This book presents a broad overview of computer graphics (CG), its history, and the hardware tools it employs. Covering a substantial number of concepts and algorithms, the text describes the techniques, approaches, and algorithms at the core of this field. Emphasis is placed on practical design and implementation, highlighting how graphics software works, and explaining how current CG can generate and display realistic-looking objects. The mathematics is non-rigorous, with the necessary mathematical background introduced in the Appendixes. Features: includes numerous figures, examples and solved exercises; discusses the key 2D and 3D transformations, and the main types of projections; presents an extensive selection of methods, algorithms, and techniques; examines advanced techniques in CG, including the nature and properties of light and color, graphics standards and file formats, and fractals; explores the principles of image compression; describes the important input/output graphics devices.
This book provides a comprehensive coverage of the fields Geometric Modeling, Computer-Aided Design, and Scientific Visualization, or Computer-Aided Geometric Design. Leading international experts have contributed, thus creating a one-of-a-kind collection of authoritative articles. There are chapters outlining basic theory in tutorial style, as well as application-oriented articles. Aspects which are covered include: Historical outline Curve and surface methods Scientific Visualization Implicit methods Reverse engineering. This book is meant to be a reference text for researchers in the field as well as an introduction to graduate students wishing to get some exposure to this subject.
A book for those interested in how modern graphics programs work and how they can generate realistic-looking objects. It emphasises the mathematics behind computer graphics, most of which is included in an appendix. The main topics covered are: scan conversion methods; selecting the best pixels for generating lines, circles and other objects; geometric transformations and projections; translations, rotations, moving in 3D, perspective projections, curves and surfaces; construction, wire-frames, rendering, normals; CRTs, antialiasing, animation, colour, perception, polygons, compression. With its numerous illustrative examples and exercises, the book is ideal for a two-semester course for advanced undergraduates or graduates, while also making a fine reference for professionals in the field.
These are the Proceedings of the NATO Advanced Study Institute on Approximation Theory, Spline Functions and Applications held in the Hotel villa del Mare, Maratea, Italy between April 28,1991 and May 9, 1991. The principal aim of the Advanced Study Institute, as reflected in these Proceedings, was to bring together recent and up-to-date developments of the subject, and to give directions for future research. Amongst the main topics covered during this Advanced Study Institute is the subject of uni variate and multivariate wavelet decomposition over spline spaces. This is a relatively new area in approximation theory and an increasingly impor tant subject. The work involves key techniques in...
The present thesis introduces a new approach for the generation of CK-approximants of functions defined on closed submanifolds for arbitrary k ∈ N. In case a function on a surface resembles the three coordinates of a topologically equivalent surface in R3, we even obtain Ck-approximants of closed surfaces of arbitrary topology. The key idea of our method is a constant extension of the target function into the submanifold's ambient space. In case the reference submanifolds are embedded and Ck, the usage of standard tensor product B-splines for the approximation of the extended function is straightforward. We obtain a Ck-approximation of the target function by restricting the approximant to ...
This volume contains the proceedings of the AMS Special Session on Wavelet and Frame Theoretic Methods in Harmonic Analysis and Partial Differential Equations, held September 22-23, 2012, at the Rochester Institute of Technology, Rochester, NY, USA. The book features new directions, results and ideas in commutative and noncommutative abstract harmonic analysis, operator theory and applications. The commutative part includes shift invariant spaces, abelian group action on Euclidean space and frame theory; the noncommutative part includes representation theory, continuous and discrete wavelets related to four dimensional Euclidean space, frames on symmetric spaces, $C DEGREES*$-algebras, proje...