You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The second Women in Numbers workshop (WIN2) was held November 6-11, 2011, at the Banff International Research Station (BIRS) in Banff, Alberta, Canada. During the workshop, group leaders presented open problems in various areas of number theory, and working groups tackled those problems in collaborations begun at the workshop and continuing long after. This volume collects articles written by participants of WIN2. Survey papers written by project leaders are designed to introduce areas of active research in number theory to advanced graduate students and recent PhDs. Original research articles by the project groups detail their work on the open problems tackled during and after WIN2. Other a...
Contributions by leading experts in the field provide a snapshot of current progress in polynomials and number theory.
This book contains papers presented at the fifth Canadian Number Theory Association (CNTA) conference held at Carleton University (Ottawa, ON). The invited speakers focused on arithmetic algebraic geometry and elliptic curves, diophantine problems, analytic number theory, and algebraic and computational number theory. The contributed talks represented a wide variety of areas in number theory. David Boyd gave an hour-long talk on "Mahler's Measure and Elliptic Curves". This lecture was open to the public and attracted a large audience from outside the conference.
The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.
Collects articles from the meeting of the Canadian Number Theory Association held at the Centre de Recherches Mathematiques (CRM) at the University of Montreal. This book covers topics such as algebraic number theory, analytic number theory, arithmetic algebraic geometry, computational number theory, and Diophantine analysis and approximation.
The functions studied in this monogra9h are a cross between elliptic functions and modular forms in one variable. Specifically, we define a Jacobi form on SL (~) to be a holomorphic function 2 (JC = upper half-plane) satisfying the t\-10 transformation eouations 2Tiimcz· k CT +d a-r +b z) (1) ((cT+d) e cp(T, z) cp CT +d ' CT +d (2) rjl(T, z+h+]l) and having a Four·ier expansion of the form 00 e2Tii(nT +rz) (3) cp(T, z) 2: c(n, r) 2:: rE~ n=O 2 r ~ 4nm Here k and m are natural numbers, called the weight and index of rp, respectively. Note that th e function cp (T, 0) is an ordinary modular formofweight k, whileforfixed T thefunction z-+rjl( -r, z) isa function of the type normally used to embed the elliptic curve ~/~T + ~ into a projective space. If m= 0, then cp is independent of z and the definition reduces to the usual notion of modular forms in one variable. We give three other examples of situations where functions satisfying (1)-(3) arise classically: 1. Theta series. Let Q: ~-+ ~ be a positive definite integer valued quadratic form and B the associated bilinear form.