You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Thurston maps are topological generalizations of postcritically-finite rational maps. This book provides a comprehensive study of ergodic theory of expanding Thurston maps, focusing on the measure of maximal entropy, as well as a more general class of invariant measures, called equilibrium states, and certain weak expansion properties of such maps. In particular, we present equidistribution results for iterated preimages and periodic points with respect to the unique measure of maximal entropy by investigating the number and locations of fixed points. We then use the thermodynamical formalism to establish the existence, uniqueness, and various other properties of the equilibrium state for a Holder continuous potential on the sphere equipped with a visual metric. After studying some weak expansion properties of such maps, we obtain certain large deviation principles for iterated preimages and periodic points under an additional assumption on the critical orbits of the maps. This enables us to obtain general equidistribution results for such points with respect to the equilibrium states under the same assumption.
The magazine that helps career moms balance their personal and professional lives.
Hermann Weyl considered value distribution theory to be the greatest mathematical achievement of the first half of the 20th century. The present lectures show that this beautiful theory is still growing. An important tool is complex approximation and some of the lectures are devoted to this topic. Harmonic approximation started to flourish astonishingly rapidly towards the end of the 20th century, and the latest development, including approximation manifolds, are presented here. Since de Branges confirmed the Bieberbach conjecture, the primary problem in geometric function theory is to find the precise value of the Bloch constant. After more than half a century without progress, a breakthrough was recently achieved and is presented. Other topics are also presented, including Jensen measures. A valuable introduction to currently active areas of complex analysis and potential theory. Can be read with profit by both students of analysis and research mathematicians.
This book provides a thorough exposition of the main concepts and results related to various types of convergence of measures arising in measure theory, probability theory, functional analysis, partial differential equations, mathematical physics, and other theoretical and applied fields. Particular attention is given to weak convergence of measures. The principal material is oriented toward a broad circle of readers dealing with convergence in distribution of random variables and weak convergence of measures. The book contains the necessary background from measure theory and functional analysis. Large complementary sections aimed at researchers present the most important recent achievements. More than 100 exercises (ranging from easy introductory exercises to rather difficult problems for experienced readers) are given with hints, solutions, or references. Historic and bibliographic comments are included. The target readership includes mathematicians and physicists whose research is related to probability theory, mathematical statistics, functional analysis, and mathematical physics.
None
I first had a quick look, then I started reading it. I couldn't stop. -Gerard 't Hooft (Nobel Prize, in Physics 1999) This is a book about the mathematical nature of our Universe. Armed with no more than basic high school mathematics, Dr. Joel L. Schiff takes you on a foray through some of the most intriguing aspects of the world around us. Along the way, you will visit the bizarre world of subatomic particles, honey bees and ants, galaxies, black holes, infinity, and more. Included are such goodies as measuring the speed of light with your microwave oven, determining the size of the Earth with a stick in the ground and the age of the Solar System from meteorites, understanding how the Theory of Relativity makes your everyday GPS system possible, and so much more. These topics are easily accessible to anyone who has ever brushed up against the Pythagorean Theorem and the symbol π, with the lightest dusting of algebra. Through this book, science-curious readers will come to appreciate the patterns, seeming contradictions, and extraordinary mathematical beauty of our Universe.
This book gives an up-to-date account of progress on Pansu's celebrated problem on the sub-Riemannian isoperimetric profile of the Heisenberg group. It also serves as an introduction to the general field of sub-Riemannian geometric analysis. It develops the methods and tools of sub-Riemannian differential geometry, nonsmooth analysis, and geometric measure theory suitable for attacks on Pansu's problem.
This book, a tribute to historian of mathematics Jeremy Gray, offers an overview of the history of mathematics and its inseparable connection to philosophy and other disciplines. Many different approaches to the study of the history of mathematics have been developed. Understanding this diversity is central to learning about these fields, but very few books deal with their richness and concrete suggestions for the “what, why and how” of these domains of inquiry. The editors and authors approach the basic question of what the history of mathematics is by means of concrete examples. For the “how” question, basic methodological issues are addressed, from the different perspectives of mathematicians and historians. Containing essays by leading scholars, this book provides a multitude of perspectives on mathematics, its role in culture and development, and connections with other sciences, making it an important resource for students and academics in the history and philosophy of mathematics.
The classification of finite simple groups is a landmark result of modern mathematics. The multipart series of monographs which is being published by the AMS (Volume 40.1–40.7 and future volumes) represents the culmination of a century-long project involving the efforts of scores of mathematicians published in hundreds of journal articles, books, and doctoral theses, totaling an estimated 15,000 pages. This part 7 of the series is the middle of a trilogy (Volume 40.5, Volume 40.7, and forthcoming Volume 40.8) treating the Generic Case, i.e., the identification of the alternating groups of degree at least 13 and most of the finite simple groups of Lie type and Lie rank at least 4. Moreover,...
Contains proceedings that reflects the 2001 Ahlfors-Bers Colloquium held at the University of Connecticut (Storrs). This book is suitable for graduate students and researchers interested in complex analysis.