You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The aim of this book is to familiarize the reader with the concept of electromagnetic time reversal, and introduce up-to-date applications of the concept found in the areas of electromagnetic compatibility and power systems. It is original in its approach to describing propagation and transient issues in power networks and power line communication, and is the result of the three main editors' pioneering research in the area.
Provides comprehensive coverageof the basic principles involved in the analysis and computation of power system transients using a statistical approach. The book deals with probability distribution of switching over-voltages in overhead lines, underground cables, and machine windings. The accuracy of statistical methods for power system transients is also discussed.
This book presents the overall vision and research outcomes of Nano-Tera.ch, which is a landmark Swiss federal program to advance engineering system and device technologies with applications to Health and the Environment, including smart Energy generation and consumption. The authors discuss this unprecedented nation-wide program, with a lifetime of almost 10 years and a public funding of more than 120 MCHF, which helped to position Switzerland at the forefront of the research on multi-scale engineering of complex systems and networks, and strongly impacted the Swiss landscape in Engineering Sciences.
This book constitutes the refereed proceedings of the 16th International GI/ITG Conference on Measurement, Modeling and Evaluation of Computing Systems and Dependability and Fault Tolerance, MMB & DFT 2012, held in Kaiserslautern, Germany, in March 2012. The 16 revised full papers presented together with 5 tool papers and 5 selected workshop papers were carefully reviewed and selected from 54 submissions. MMB & DFT 2012 covers diverse aspects of performance and dependability evaluation of systems including networks, computer architectures, distributed systems, software, fault-tolerant and secure systems.
This book aims to provide insights on new trends in power systems operation and control and to present, in detail, analysis methods of the power system behavior (mainly its dynamics) as well as the mathematical models for the main components of power plants and the control systems implemented in dispatch centers. Particularly, evaluation methods for rotor angle stability and voltage stability as well as control mechanism of the frequency and voltage are described. Illustrative examples and graphical representations help readers across many disciplines acquire ample knowledge on the respective subjects.
STATE FEEDBACK CONTROL AND KALMAN FILTERING WITH MATLAB/SIMULINK TUTORIALS Discover the control engineering skills for state space control system design, simulation, and implementation State space control system design is one of the core courses covered in engineering programs around the world. Applications of control engineering include things like autonomous vehicles, renewable energy, unmanned aerial vehicles, electrical machine control, and robotics, and as a result the field may be considered cutting-edge. The majority of textbooks on the subject, however, lack the key link between the theory and the applications of design methodology. State Feedback Control and Kalman Filtering with MA...
Frequency Variations in Power Systems: Modeling, State Estimation and Control presents the Frequency Divider Formula (FDF); a unique approach that defines, calculates and estimates the frequency in electrical energy systems. This authoritative book is written by two noted researchers on the topic. They define the meaning of frequency of an electrical quantity (such as voltage and current) in non-stationary conditions (for example the frequency is not equal to the nominal one) and pose the foundation of the frequency divider formula. The book describes the consequences of using a variable frequency in power system modelling and simulations, in state estimation and frequency control applicatio...
Gain an in-depth understanding of converter-interfaced energy storage systems with this unique text, covering modelling, dynamic behaviour, control, and stability analysis. Providing comprehensive coverage, it demonstrates the technical and economic aspects of energy storage systems, and provides a thorough overview of energy storage technologies. Several different modelling techniques are presented, including power system models, voltage-sourced converter models, and energy storage system models. Using a novel stochastic control approach developed by the authors, you will learn about the impact of energy storage on the dynamic interaction of microgrids with distribution and transmission systems. Compare the numerous real-world simulation data and numerical examples provided with your own models and control strategies. Accompanied online by a wealth of numerical examples and supporting data, this is the ideal text for graduate students, researchers, and industry professionals working in power system dynamics, renewable energy integration, and smart grid development.
This book constitutes the refereed proceedings of the 16th International Conference on Critical Information Infrastructures Security, CRITIS 2021, which took place in Lausanne, Switzerland, during September 27-29, 2021. The 12 full papers included in this volume were carefully reviewed and selected from 42 submissions. They were organized in topical sections as follows: protection of cyber-physical systems and industrial control systems (ICS); C(I)IP organization, (strategic) management and legal aspects; human factor, security awareness and crisis management for C(I)IP and critical services; and future, TechWatch and forecast for C(I)IP and critical services.