You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the Logic at Harvard conference in honor of W. Hugh Woodin's 60th birthday, held March 27–29, 2015, at Harvard University. It presents a collection of papers related to the work of Woodin, who has been one of the leading figures in set theory since the early 1980s. The topics cover many of the areas central to Woodin's work, including large cardinals, determinacy, descriptive set theory and the continuum problem, as well as connections between set theory and Banach spaces, recursion theory, and philosophy, each reflecting a period of Woodin's career. Other topics covered are forcing axioms, inner model theory, the partition calculus, and the theory of ultrafilters. This volume should make a suitable introduction to Woodin's work and the concerns which motivate it. The papers should be of interest to graduate students and researchers in both mathematics and philosophy of mathematics, particularly in set theory, foundations and related areas.
View the abstract.
View the abstract.
View the abstract.
This book constitutes the refereed proceedings of the 19th International Conference on Unity of Logic and Computation, CiE 2023, held in Batumi, Georgia, during July 24–28, 2023. The 23 full papers and 13 invited papers included in this book were carefully reviewed and selected from 51 submissions. They were organized in topical sections as follows: Degree theory; Proof Theory; Computability; Algorithmic Randomness; Computational Complexity; Interactive proofs; and Combinatorial approaches.
This book constitutes the refereed proceedings of the Third International Conference on Theory and Applications of Models of Computation, TAMC 2006, held in Beijing, China, in May 2006. The 75 revised full papers presented together with 7 plenary talks were carefully reviewed and selected from 319 submissions. All major areas in computer science, mathematics (especially logic) and the physical sciences particularly with regard to computation and computability theory are addressed.
We study 2D compressible Euler flows in bounded impermeable domains whose boundary is smooth except for corners. We assume that the angles of the corners are small enough. Then we obtain local (in time) existence of solutions which keep the L2 Sobolev regularity of their Cauchy data, provided the external forces are sufficiently regular and suitable compatibility conditions are satisfied. Such a result is well known when there is no corner. Our proof relies on the study of associated linear problems. We also show that our results are rather sharp: we construct counterexamples in which the smallness condition on the angles is not fulfilled and which display a loss of L2 Sobolev regularity with respect to the Cauchy data and the external forces.