You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is the first easy-to-read text on nonsmooth optimization (NSO, not necessarily differentiable optimization). Solving these kinds of problems plays a critical role in many industrial applications and real-world modeling systems, for example in the context of image denoising, optimal control, neural network training, data mining, economics and computational chemistry and physics. The book covers both the theory and the numerical methods used in NSO and provide an overview of different problems arising in the field. It is organized into three parts: 1. convex and nonconvex analysis and the theory of NSO; 2. test problems and practical applications; 3. a guide to NSO software. The book is ideal for anyone teaching or attending NSO courses. As an accessible introduction to the field, it is also well suited as an independent learning guide for practitioners already familiar with the basics of optimization.
Solving nonsmooth optimization (NSO) problems is critical in many practical applications and real-world modeling systems. The aim of this book is to survey various numerical methods for solving NSO problems and to provide an overview of the latest developments in the field. Experts from around the world share their perspectives on specific aspects of numerical NSO. The book is divided into four parts, the first of which considers general methods including subgradient, bundle and gradient sampling methods. In turn, the second focuses on methods that exploit the problem’s special structure, e.g. algorithms for nonsmooth DC programming, VU decomposition techniques, and algorithms for minimax ...
This book is a self-contained elementary study for nonsmooth analysis and optimization, and their use in solution of nonsmooth optimal control problems. The first part of the book is concerned with nonsmooth differential calculus containing necessary tools for nonsmooth optimization. The second part is devoted to the methods of nonsmooth optimization and their development. A proximal bundle method for nonsmooth nonconvex optimization subject to nonsmooth constraints is constructed. In the last part nonsmooth optimization is applied to problems arising from optimal control of systems covered by partial differential equations. Several practical problems, like process control and optimal shape design problems are considered.
During the past two decades, the consideration of mUltiple objectives in modeling and decision making has grown by leaps and bounds. The nineties in particular have seen the emphasis shift from the dominance of single-objective modeling and optimization toward an emphasis on multiple objectives. The proceedings of this Conference epitomize these evolutionary changes and contribute to the important role that the tield of multiple criteria decision making (MCDM) now plays in planning, design, operational, management, and policy decisions. Of special interest are the contributions of MCDM to manufacturing engineering. For example, it has recently been recognized that optimal, single-objective s...
This book describes optimization models of clustering problems and clustering algorithms based on optimization techniques, including their implementation, evaluation, and applications. The book gives a comprehensive and detailed description of optimization approaches for solving clustering problems; the authors' emphasis on clustering algorithms is based on deterministic methods of optimization. The book also includes results on real-time clustering algorithms based on optimization techniques, addresses implementation issues of these clustering algorithms, and discusses new challenges arising from big data. The book is ideal for anyone teaching or learning clustering algorithms. It provides an accessible introduction to the field and it is well suited for practitioners already familiar with the basics of optimization.
Combinatorial optimization is the process of finding the best, or optimal, so lution for problems with a discrete set of feasible solutions. Applications arise in numerous settings involving operations management and logistics, such as routing, scheduling, packing, inventory and production management, lo cation, logic, and assignment of resources. The economic impact of combi natorial optimization is profound, affecting sectors as diverse as transporta tion (airlines, trucking, rail, and shipping), forestry, manufacturing, logistics, aerospace, energy (electrical power, petroleum, and natural gas), telecommu nications, biotechnology, financial services, and agriculture. While much progress h...
This book constitutes the refereed proceedings of the 17th Conference of the Canadian Society for Computational Studies of Intelligence, Canadian AI 2004, held in London, Ontario, Canada in May 2004. The 29 revised full papers and 22 revised short papers were carefully reviewed and selected from 105 submissions. These papers are presented together with the extended abstracts of 14 contributions to the graduate students' track. The full papers are organized in topical sections on agents, natural language processing, learning, constraint satisfaction and search, knowledge representation and reasoning, uncertainty, and neural networks.
Mathematical methods and theories with interdisciplinary applications are presented in this book. The eighteen contributions presented in this Work have been written by eminent scientists; a few papers are based on talks which took place at the International Conference at the Hellenic Artillery School in May 2015. Each paper evaluates possible solutions to long-standing problems such as the solvability of the direct electromagnetic scattering problem, geometric approaches to cyber security, ellipsoid targeting with overlap, non-equilibrium solutions of dynamic networks, measuring ballistic dispersion, elliptic regularity theory for the numerical solution of variational problems, approximatio...
From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer science, applied mathematics (PhD level) and to researchers interested in the topic.
Most real-life problems involve making decisions to optimally achieve a number of criteria while satisfying some hard or soft constraints. In this book several methods for solving such problems are presented by the leading experts in the area. The book also contains a number of very interesting application papers which demonstrate theoretical modelling, analysing and solution of real-life problems.