You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A comprehensive overview of different antimicrobial polymeric materials, their antimicrobial action modes and applications.
This book collects the articles published in the Special Issue “Polymeric Materials: Surfaces, Interfaces and Bioapplications”. It shows the advances in polymeric materials, which have tremendous applications in agricultural films, food packaging, dental restoration, antimicrobial systems, and tissue engineering. These polymeric materials are presented as films, coatings, particles, fibers, hydrogels, or networks. The potential to modify and modulate their surfaces or their content by different techniques, such as click chemistry, ozonation, breath figures, wrinkle formation, or electrospray, are also explained, taking into account the relationship between the structure and properties in the final application. Moreover, new trends in the development of such materials are presented, using more environmental friendly and safe methods, which, at the same time, have a high impact on our society.
This is an expanded and revised second edition, presenting accurate and comprehensive information about our leading thermal scientists to current and future generations. In our globalized world, most researchers in thermal analysis do not know each other in person and are not familiar with each other’s achievements. This volume provides the reader with an up-to-date list of the prominent members in this community. The publication contains only living scientists. The selection is based partly on several decades of the editors' personal professional experience and also partly on the opinion of the Regional Editors of the Journal of Thermal Analysis and Calorimetry.
The rapid increase in the emergence of antibiotic-resistant bacterial strains, combined with a dwindling rate of discovery of novel antibiotic molecules, has created an alarming issue worldwide. Although the occurrence of resistance in microbes is a natural process, the overuse of antibiotics is known to increase the rate of resistance evolution. Under antibiotic treatment, susceptible bacteria inevitably die, while resistant microorganisms proliferate under reduced competition. Therefore, the out-of-control use of antibiotics eliminates drug-susceptible species that would naturally limit the expansion of resistant species. In addition, the ability of many microbial species to grow as a biof...
A trip to Singapore to start a new life. Here, the protagonist will find hope, betrayal, pain, will live a torrid love story with a disconcerting woman. How does he end up in the hell of Bang Kwang, a Thai maximum security prison? What makes him become a completely different man, capable of the darkest atrocities? A captivating mafia, mystery and violence story that will carry you through waves of feelings and adventures that will grip you from the first page. A novel filled with emotions and a surprising ending that will leave no one indifferent. Sometimes life doesn't offer many options and those offered don't have to be the ones you are keen on. You don't even have to like them. Readers s...
Smart nanomaterials are the basis of diverse emerging applications, and this book covers their technological advances, innovations, and practical applications. It covers advances in the most critical aspects in chemistry and material fabrication of nanomaterials including engineering/prospective applications. The application of smart nanomaterials in the biomedical field, agriculture, food industry, and apparel industry is covered with practical examples. It discusses the future of smart nanomaterials and the pros and cons associated with smart nanomaterials in a detailed manner. Features: Reviews synthesis methods, characterization techniques, and applications of smart nanomaterials. Explor...
After letting his beloved go, David has no choice but to become part of one of the most powerful and cruel mafia of Asia. He will have to face increasingly dangerous missions that will help him climb within the organization. Will he manage to escape from its claws? Will he be able to escape from himself and the spiral of darkness that he is getting into? Or will he end up giving into his dark side? A story of mafia, violence and revenge with an intensity that keeps the reader in suspense until the end. Sometimes life doesn't give you many options and the ones it offers you don't have to be the ones that you like the most. You don't even have to like them. The frenetic finale to the Trakaul b...
The ability to form biofilms is a universal attribute of bacteria. Bacteria are able to grow on almost every surface, forming these architecturally complex communities. In biofilms, the cells grow in multicellular aggregates, encased in an extracellular matrix produced by the bacteria themselves. They impact humans in many ways, and can form in natural, medical and industrial settings. For example, the formation of biofilms on medical devices such as catheters or implants often results in difficult-to-treat chronic infections. This book focuses on emerging concepts in bacterial biofilm research, such as the different mechanisms of biofilm formation in Gram negative and Gram positive bacteria, and the burden of biofilm associated infections. It also highlights the various anti-biofilm strategies that can be translated to curb biofilm-associated infections and the escalation of antimicrobial resistance determinants.
There is a high demand for antimicrobials for the treatment of new and emerging microbial diseases. In particular, microbes developing multidrug resistance have created a pressing need to search for a new generation of antimicrobial agents, which are effective, safe and can be used for the cure of multidrug-resistant microbial infections. Nano-antimicrobials offer effective solutions for these challenges; the details of these new technologies are presented here. The book includes chapters by an international team of experts. Chemical, physical, electrochemical, photochemical and mechanical methods of synthesis are covered. Moreover, biological synthesis using microbes, an option that is both eco-friendly and economically viable, is presented. The antimicrobial potential of different nanoparticles is also covered, bioactivity mechanisms are elaborated on, and several applications are reviewed in separate sections. Lastly, the toxicology of nano-antimicrobials is briefly assessed.