You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The reference work describes in its new edition still more up-to-date methods for the recycling and purifi cation processes of rare earth element analysis for industrial and scientific purposes alike. Due to their vast applications, from computer hardware to mobile phones and electric cars, REEs have become a valuable resource for our modern life. New topics: emission spectroscopy, analysis of environmental samples and pharmaceutical applications.
Many elements and inorganic compounds play an extraordinary role in daily life for numerous applications, e. g., construction materials, inorganic pigments, inorganic coatings, steel, glass, technical gases, energy storage and conversion materials, fertilizers, homogeneous and heterogeneous catalysts, photofunctional materials, semiconductors, superconductors, soft- and hard magnets, technical ceramics, hard materials, or biomedical and bioactive materials. The present book is written by experienced authors who give a comprehensive overview on the many chemical and physico-chemical aspects related to application of inorganic compounds and materials in order to introduce senior undergraduate and postgraduate students (chemists, physicists, materials scientists, engineers) into this broad field. Volume 3 presents electronic, magnetic, biomedical, carbon- and sulfur-based materials and ceramics. Vol. 1. From Construction Materials to Technical Gases. Vol. 2. From Energy Storage to Photofunctional Materials.
This work introduces into the chemistry, materials science and technology of Rare Earth Elements. The chapters by experienced lecturers describe comprehensively the recent studies of their characteristics, properties and applications in functional materials. Due to the broad range of covered topics as hydrogen storage materials, LEDs or permanent magnets this work gives an up-to-date presentation of this fascinating research.
Many elements and inorganic compounds play an extraordinary role in daily life for numerous applications, e. g., construction materials, inorganic pigments, inorganic coatings, steel, glass, technical gases, energy storage and conversion materials, fertilizers, homogeneous and heterogeneous catalysts, photofunctional materials, semiconductors, superconductors, soft- and hard magnets, technical ceramics, hard materials, or biomedical and bioactive materials. The present book is written by experienced authors who give a comprehensive overview on the many chemical and physico-chemical aspects related to application of inorganic compounds and materials in order to introduce senior undergraduate and postgraduate students (chemists, physicists, materials scientists, engineers) into this broad field. Volume 1 covers construction materials, coatings, metals, intermetallics, technical glasses and technical gases. Vol. 2. From Energy Storage to Photofunctional Materials. Vol. 3. From Magnetic to Bioactive Materials.
A guide to industrially relevant products and processes for transportation fuels The Handbook of Fuels offers a comprehensive review of the wide variety of fuels used to power vehicles, aircraft and ships and examines the processes to produce these fuels. The updated second edition reflects the growing importance of fuels and fuel additives from renewable sources. New chapters include information on current production technology and use of bioethanol, biomethanol and biomass-to-liquid fuels. The book also reviews novel additives and performanace enhancers for conventional engines and fuels for novel bybrid engines. This comprehensive resource contains critical information on the legal, safet...
To address the grand challenges of the 21st century, societies must undergo substantial transformations. Whether the Sustainable Development Goals (SDGs), set in place by the United Nations as targets to be reached by 2030, can be reached will depend in part on how successfully education strategies empower learners of all ages with the knowledge, skills, values, and attitudes to transform themselves, their communities, and their societies. Educational institutions have critical roles to play in facilitating and supporting these transitions. To fulfill this vision and be transformational, however, education and educational institutions themselves will have to be transformed. Digitalization, N...
Many elements and inorganic compounds play an extraordinary role in daily life for numerous applications, e. g., construction materials, inorganic pigments, inorganic coatings, steel, glass, technical gases, energy storage and conversion materials, fertilizers, homogeneous and heterogeneous catalysts, photofunctional materials, semiconductors, superconductors, soft- and hard magnets, technical ceramics, hard materials, or biomedical and bioactive materials. The present book is written by experienced authors who give a comprehensive overview on the many chemical and physico-chemical aspects related to application of inorganic compounds and materials in order to introduce senior undergraduate and postgraduate students (chemists, physicists, materials scientists, engineers) into this broad field. Volume 2 discusses energy storage, ionic solids, catalytic materials and photofunctional materials. Vol. 1. From Construction Materials to Technical Gases. Vol. 3. From Magnetic to Bioactive Materials.
Advances in Energy, Environment and Chemical Engineering collects papers resulting from the conference on Energy, Environment and Chemical Engineering (AEECE 2022), Dali, China, 24-26 June, 2022. The primary goal is to promote research and developmental activities in energy technology, environment engineering and chemical engineering. Moreover, it aims to promote scientific information interchange between scholars from the top universities, business associations, research centers and high-tech enterprises working all around the world. The conference conducts in-depth exchanges and discussions on relevant topics such as energy engineering, environment technology and advanced chemical technolo...
During the last decade, software developments in Scanning Electron Microscopy (SEM) provoked a notable increase of applications to the study of solid matter. The mineral liberation analysis (MLA) of processed metal ores was an important drive for innovations that led to QEMSCAN, MLA and other software platforms. These combine the assessment of the backscattered electron (BSE) image to the directed steering of the electron beam for energy dispersive spectroscopy (EDS) to automated mineralogy. However, despite a wide distribution of SEM instruments in material research and industry, the potential of SEM automated mineralogy is still under-utilised. The characterisation of primary ores, and the...