You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The aim of the book is to familiarize the new generation of PhD students and postdoctoral fellows with the principles and methods of modern lattice field theory, which aims to resolve fundamental, non-perturbative questions about QCD without uncontrolled approximations.
The book begins with a brief review of supersymmetry, and the construction of the minimal supersymmetric standard model and approaches to supersymmetry breaking. General non-perturbative methods are also reviewed leading to the development of holomorphy and the Affleck-Dine-Seiberg superpotential as powerful tools for analysing supersymmetric theories. Seiberg duality is discussed in detail, with many example applications provided, with special attention paid to its use in understanding dynamical supersysmmetry breaking. The Seiberg-Witten theory of monopoles is introduced through the analysis of simpler N=1 analogues. Superconformal field theories are described along with the most recent de...
Supersymmetry is an extension of the successful Standard Model of particle physics; it relies on the principle that fermions and bosons are related by a symmetry, leading to an elegant predictive structure for quantum field theory. This textbook provides a comprehensive and pedagogical introduction to supersymmetry and spinor techniques in quantum field theory. By utilising the two-component spinor formalism for fermions, the authors provide many examples of practical calculations relevant for collider physics signatures, anomalies, and radiative corrections. They present in detail the component field and superspace formulations of supersymmetry and explore related concepts, including the theory of extended Higgs sectors, models of grand unification, and the origin of neutrino masses. Numerous exercises are provided at the end of each chapter. Aimed at graduate students and researchers, this volume provides a clear and unified treatment of theoretical concepts that are at the frontiers of high energy particle physics.
This book contains write-ups of lectures from a summer school for advanced graduate students in elementary particle physics. In the first lecture, Scott Willenbrock gives an overview of the standard model of particle physics. This is followed by reviews of specific areas of standard model physics: precision electroweak analysis by James Wells, quantum chromodynamics and jets by George Sterman, and heavy quark effective field by Matthias Neubert. Developments in neutrino physics are discussed by Andr‚ de Gouvea and the theory behind the Higgs boson is addressed by Laura Reina. Collider phenomenology from both experimental and theoretical perspectives are highlighted by Heidi Schellman and Tao Han. A brief survey of dynamical electroweak symmetry breaking is provided by R Sekhar Chivukula and Elizabeth H Simmons. Martin Schmaltz covers the recent proposals for ?little? Higgs theories. Markus Luty describes what is needed to make supersymmetric theories realistic by breaking supersymmetry. There is an entire series of lectures by Raman Sundrum, Graham Kribs, and Csaba Cs ki on extra dimensions. Finally, Keith Olive completes the book with a review of astrophysics.
Understanding the Trinity is a revolution in Christian thought and philosophy. True Christianity is a Jewish religion established and organized by Jews. Gentiles were invited by Jews, with God's approval, to participate in the Christian movement. However, Gentile Leaders in most Christian Churches of the world today do not preach the original Christian gospel message of salvation that was first delivered to the saints by the apostle Paul (Galatians 1:8-9). "Understanding the Trinity, Three Persons vs Three Manifestations," will bring us back to the original gospel message, the oneness of God, and the power of God's name in the face of Jesus Christ. (Deuteronomy 6:4, Luke 2:11). When Billy G....