You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Since information in the brain is processed by the exchange of spikes among neurons, a study of such group dynamics is extremely important in understanding hippocampus dependent memory. These spike patterns and local field potentials (LFPs) have been analyzed by various statistical methods. These studies have led to important findings of memory information processing. For example, memory-trace replay, a reactivation of behaviorally induced neural patterns during subsequent sleep, has been suggested to play an important role in memory consolidation. It has also been suggested that a ripple/sharp wave event (one of the characteristics of LFPs in the hippocampus) and spiking activity in the cor...
Modern neural networks gave rise to major breakthroughs in several research areas. In neuroscience, we are witnessing a reappraisal of neural network theory and its relevance for understanding information processing in biological systems. The research presented in this book provides various perspectives on the use of artificial neural networks as models of neural information processing. We consider the biological plausibility of neural networks, performance improvements, spiking neural networks and the use of neural networks for understanding brain function.
The amount of data being produced by neuroscientists is increasing rapidly, driven by advances in neuroimaging and recording techniques spanning multiple scales of resolution. The availability of such data poses significant challenges for their processing and interpretation. To gain a deeper understanding of the surrounding issues, the Editors of this e-Book reached out to an interdisciplinary community, and formed the Cortical Networks Working Group, and the genesis of this e-Book thus began with the formation of this Working Group, which was supported by the National Institute for Mathematical and Biological Synthesis in the USA. The Group consisted of scientists from neuroscience, physics...
How do sensory neurons transmit information about environmental stimuli to the central nervous system? How do networks of neurons in the CNS decode that information, thus leading to perception and consciousness? These questions are among the oldest in neuroscience. Quite recently, new approaches to exploration of these questions have arisen, often from interdisciplinary approaches combining traditional computational neuroscience with dynamical systems theory, including nonlinear dynamics and stochastic processes. In this volume in two sections a selection of contributions about these topics from a collection of well-known authors is presented. One section focuses on computational aspects from single neurons to networks with a major emphasis on the latter. The second section highlights some insights that have recently developed out of the nonlinear systems approach.
This volume includes papers presented at the Sixth Annual Computational Neurosci ence meeting (CNS*97) held in Big Sky, Montana, July 6-10, 1997. This collection includes 103 of the 196 papers presented at the meeting. Acceptance for meeting presentation was based on the peer review of preliminary papers originally submitted in January of 1997. The papers in this volume represent final versions of this work submitted in January of 1998. Taken together they provide a cross section of computational neuroscience and represent well the continued vitality and growth of this field. The meeting in Montana was unusual in several respects. First, to our knowledge it was the first international scient...
Cognitive mathematics provides insights into how mathematics works inside the brain and how it is interconnected with other faculties through so-called blending and other associative processes. This handbook is the first large collection of various aspects of cognitive mathematics to be amassed into a single title, covering decades of connection between mathematics and other figurative processes as they manifest themselves in language, art, and even algorithms. It will be of use to anyone working in math cognition and education, with each section of the handbook edited by an international leader in that field.
How do we find our way? The discovery of medial entorhinal cortex grid cells in 2005 stimulated a wide variety of experimental, theoretical and computational work aimed at elucidating the neural circuit underlying spatial representations in the entorhinal cortex. However, grid cells act in concert with place cells, head direction cells and border cells, each playing a part in the spatial navigation circuit. The aim of this Research Topics is to solicit contributions from leading researchers in the field of spatial navigation and spatial memory to present new experimental data, computational modeling or discussion on mechanisms underlying the neural encoding of space in the parahippocampal cortices.