You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Interfaces are geometrical objects modelling free or moving boundaries and arise in a wide range of phase change problems in physical and biological sciences, particularly in material technology and in dynamics of patterns. Especially in the end of last century, the study of evolving interfaces in a number of applied fields becomes increasingly important, so that the possibility of describing their dynamics through suitable mathematical models became one of the most challenging and interdisciplinary problems in applied mathematics. The 2000 Madeira school reported on mathematical advances in some theoretical, modelling and numerical issues concerned with dynamics of interfaces and free boundaries. Specifically, the five courses dealt with an assessment of recent results on the optimal transportation problem, the numerical approximation of moving fronts evolving by mean curvature, the dynamics of patterns and interfaces in some reaction-diffusion systems with chemical-biological applications, evolutionary free boundary problems of parabolic type or for Navier-Stokes equations, and a variational approach to evolution problems for the Ginzburg-Landau functional.
Part I of this volume surveys the developments in the analysis of nonlinear phenomena in Japan during the past decade, while Part II consists of up-to-date original papers concerning qualitative theories and their applications.Dealt with here are nonlinear problems related to general analysis, fluid dynamics, mathematical biology and computer sciences, and their underlying mathematical structures, e.g. nonlinear waves and propagations, bifurcation phenomena, chaotic phenomena, and fractals.The volume is dedicated to Professor Masaya Yamaguti in celebration of his 60th birthday.
The problems treated in this volume concern nonlinear partial differential equations occurring in the areas of fluid dynamics, free boundary problems, population dynamics and mathematical physics. Presented are new results and new methods for analysis in bifurcation, singular perturbation, variational methods, stability analysis, rearrangement, energy inequalities, etc.
This volume is a collection of articles discussing the most recent advances on various topics in partial differential equations. Many important issues regarding evolution problems, their asymptotic behavior and their qualitative properties are addressed. The quality and completeness of the articles will make this book a source of inspiration and references in the future. Contents: Steady Free Convection in a Bounded and Saturated Porous Medium (S Akesbi et al.); Quasilinear Parabolic Functional Evolution Equations (H Amann); A Linear Parabolic Problem with Non-Dissipative Dynamical Boundary Conditions (C Bandle & W Reichel); Remarks on Some Class of Nonlocal Elliptic Problems (M Chipot); On ...
This volume is a collection of articles discussing the most recent advances on various topics in partial differential equations. Many important issues regarding evolution problems, their asymptotic behavior and their qualitative properties are addressed. The quality and completeness of the articles will make this book a source of inspiration and references in the future.
The past forty years have been the stage for the maturation of mathematical biolo~ as a scientific field. The foundations laid by the pioneers of the field during the first half of this century have been combined with advances in ap plied mathematics and the computational sciences to create a vibrant area of scientific research with established research journals, professional societies, deep subspecialty areas, and graduate education programs. Mathematical biology is by its very nature cross-disciplinary, and research papers appear in mathemat ics, biology and other scientific journals, as well as in the specialty journals devoted to mathematical and theoretical biology. Multiple author pape...
None
This is a short and self-contained introduction to the field of mathematical modeling of gene-networks in bacteria. As an entry point to the field, we focus on the analysis of simple gene-network dynamics. The notes commence with an introduction to the deterministic modeling of gene-networks, with extensive reference to applicable results coming from dynamical systems theory. The second part of the notes treats extensively several approaches to the study of gene-network dynamics in the presence of noise—either arising from low numbers of molecules involved, or due to noise external to the regulatory process. The third and final part of the notes gives a detailed treatment of three well stu...
The purpose of this monograph is to describe recent developments in mathematical modeling and mathematical analysis of certain problems arising from cell biology. Cancer cells and their growth via several stages are of particular interest. To describe these events, multi-scale models are applied, involving continuously distributed environment variables and several components related to particles. Hybrid simulations are also carried out, using discretization of environment variables and the Monte Carlo method for the principal particle variables. Rigorous mathematical foundations are the bases of these tools.The monograph is composed of four chapters. The first three chapters are concerned wi...
This textbook provides an introduction to the mathematical models of population dynamics in mathematical biology. The focus of this book is on the biological meaning/translation of mathematical structures in mathematical models, rather than simply explaining mathematical details and literacies to analyze a model. In some recent usages of the mathematical model simply with computer numerical calculations, the model includes some inappropriate mathematical structure concerning the reasonability of modeling for the biological problem under investigation. For students and researchers who study or use mathematical models, it is important and helpful to understand what mathematical setup could be ...