You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Geometric group theory is the study of the interplay between groups and the spaces they act on, and has its roots in the works of Henri Poincaré, Felix Klein, J.H.C. Whitehead, and Max Dehn. Office Hours with a Geometric Group Theorist brings together leading experts who provide one-on-one instruction on key topics in this exciting and relatively new field of mathematics. It's like having office hours with your most trusted math professors. An essential primer for undergraduates making the leap to graduate work, the book begins with free groups—actions of free groups on trees, algorithmic questions about free groups, the ping-pong lemma, and automorphisms of free groups. It goes on to cov...
Combinatorial group theory is a loosely defined subject, with close connections to topology and logic. With surprising frequency, problems in a wide variety of disciplines, including differential equations, automorphic functions and geometry, have been distilled into explicit questions about groups, typically of the following kind: Are the groups in a given class finite (e.g., the Burnside problem)? Finitely generated? Finitely presented? What are the conjugates of a given element in a given group? What are the subgroups of that group? Is there an algorithm for deciding for every pair of groups in a given class whether they are isomorphic or not? The objective of combinatorial group theory is the systematic development of algebraic techniques to settle such questions. In view of the scope of the subject and the extraordinary variety of groups involved, it is not surprising that no really general theory exists. These notes, bridging the very beginning of the theory to new results and developments, are devoted to a number of topics in combinatorial group theory and serve as an introduction to the subject on the graduate level.
This book is about the interplay between algebraic topology and the theory of infinite discrete groups. It is a hugely important contribution to the field of topological and geometric group theory, and is bound to become a standard reference in the field. To keep the length reasonable and the focus clear, the author assumes the reader knows or can easily learn the necessary algebra, but wants to see the topology done in detail. The central subject of the book is the theory of ends. Here the author adopts a new algebraic approach which is geometric in spirit.
Heralded as "an epoch-making book" when it first appeared, this new edition takes up criticisms that readers have lodged against its interpretations. This bold study retains the redaction-critical methodology of Gundry's original work and the host of provocative interpretations that result.
Iintroductory treatment emphasizes graph imbedding but also covers connections between topological graph theory and other areas of mathematics. Authors explore the role of voltage graphs in the derivation of genus formulas, explain the Ringel-Youngs theorem, and examine the genus of a group, including imbeddings of Cayley graphs. Many figures. 1987 edition.
Details some of the most recent developments at the interface of topology and geometric group theory. Ideal for graduate students.
This volume assembles several research papers in all areas of geometric and combinatorial group theory originated in the recent conferences in Dortmund and Ottawa in 2007. It contains high quality refereed articles developing new aspects of these modern and active fields in mathematics. It is also appropriate to advanced students interested in recent results at a research level.
An up-to-date, panoramic account of the theory of random walks on groups and graphs, outlining connections with various mathematical fields.
This volume has its origins in the Barcelona Conference in Group Theory (July 2005) and the conference "Asymptotic and Probabilistic Methods in Geometric Group Theory" held in Geneva (June 2005). Twelve peer-reviewed research articles written by experts in the field present the most recent results in abstract and geometric group theory. In particular there are two articles by A. Juhász.