You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This work inaugurates a new and general solution method for arbitrary continuous nonlinear PDEs. The solution method is based on Dedekind order completion of usual spaces of smooth functions defined on domains in Euclidean spaces. However, the nonlinear PDEs dealt with need not satisfy any kind of monotonicity properties. Moreover, the solution method is completely type independent. In other words, it does not assume anything about the nonlinear PDEs, except for the continuity of their left hand term, which includes the unkown function. Furthermore the right hand term of such nonlinear PDEs can in fact be given any discontinuous and measurable function.
This book presents global actions of arbitrary Lie groups on large classes of generalised functions by using a novel parametric approach. This new method extends and completes earlier results of the author and collaborators, in which global Lie group actions on generalised functions were only defined in the case of projectable or fibre-preserving Lie group actions. The parametric method opens the possibility of dealing with vastly larger classes of Lie semigroup actions which still transform solutions into solutions. These Lie semigroups can contain arbitrary noninvertible smooth mappings. Thus, they cannot be subsemigroups of Lie groups. Audience: This volume is addressed to graduate students and researchers involved in solving linear and nonlinear partial differential equations, and in particular, in dealing with the Lie group symmetries of their classical or generalised solutions.
The 'North-Holland Mathematics Studies' series comprises a set of cutting-edge monographs and studies. This volume explores non-self-adjoint boundary eigenvalue problems for first order systems of ordinary differential equations and n-th order scalar differential equations.
None
Questions regarding the interplay of nonlinearity and the creation and propagation of singularities arise in a variety of fields-including nonlinear partial differential equations, noise-driven stochastic partial differential equations, general relativity, and geometry with singularities. A workshop held at the Erwin-Schrödinger International Institute for Mathematical Physics in Vienna investigated these questions and culminated in this volume of invited papers from experts in the fields of nonlinear partial differential equations, structure theory of generalized functions, geometry and general relativity, stochastic partial differential equations, and nonstandard analysis. The authors provide the latest research relevant to work in partial differential equations, mathematical physics, and nonlinear analysis. With a focus on applications, this books provides a compilation of recent approaches to the problem of singularities in nonlinear models. The theory of differential algebras of generalized functions serves as the central theme of the project, along with its interrelations with classical methods.