You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Peroxynitrite detection and quantification provides critical information in understanding its biological implications. It will be welcomed by the community particularly medicinal and analytical chemists, developers of sensors and probes and analytical equipment manufacturers.
This is an expanded and revised second edition, presenting accurate and comprehensive information about our leading thermal scientists to current and future generations. In our globalized world, most researchers in thermal analysis do not know each other in person and are not familiar with each other’s achievements. This volume provides the reader with an up-to-date list of the prominent members in this community. The publication contains only living scientists. The selection is based partly on several decades of the editors' personal professional experience and also partly on the opinion of the Regional Editors of the Journal of Thermal Analysis and Calorimetry.
Faculties, publications and doctoral theses in departments or divisions of chemistry, chemical engineering, biochemistry and pharmaceutical and/or medicinal chemistry at universities in the United States and Canada.
None
This book presents an in-depth analysis of the investment in catalysis basic research by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences (BES) Catalysis Science Program. Catalysis is essential to our ability to control chemical reactions, including those involved in energy transformations. Catalysis is therefore integral to current and future energy solutions, such as the environmentally benign use of hydrocarbons and new energy sources (such as biomass and solar energy) and new efficient energy systems (such as fuel cells). Catalysis for Energy concludes that BES has done well with its investment in catalysis basic research. Its investment has led to a greater understanding of the fundamental catalytic processes that underlie energy applications, and it has contributed to meeting long-term national energy goals by focusing research on catalytic processes that reduce energy consumption or use alternative energy sources. In some areas the impact of the research has been dramatic, while in others, important advances in catalysis science are yet to be made.
Peroxynitrite is a powerful oxidiser which can damage a wide array of molecules within cells, including DNA and proteins, leading to apoptosis, inflammation or cancer. Peroxynitrite detection and quantification provides critical information in understanding its biological implications. Attempts to investigate the behavior of peroxynitrite in vivo and in vitro have been hampered by the difficulty in detecting this highly reactive oxygen species. This book presents the current state of the art in this research field with contributions from scientific leaders in the field. The chapters make clear the associated challenges and development for selective and sensitive detection of peroxynitrite. This book is a timely addition to the literature, as the first in the field, dedicated to detecting this molecule in vivo. It will be welcomed by the community particularly medicinal and analytical chemists, developers of sensors and probes and analytical equipment manufacturers.
None
This book provides a comprehensive overview of the oxidative stress related mechanisms in biological systems and the involvement of reactive oxygen and nitrogen species (ROS and RNS), the damage of DNA, proteins, and lipids caused by oxidative stress, the protection of cells and tissues against free radicals, the relation of the oxidative stress to aging and human diseases including cancer and neurological disorders, and the development of new therapeutic approaches to modulate oxidative stress. The current state-of-the-art methodologies including the development of sensors and biosensors for the detection of ROS/RNS and of biomarkers of oxidative stress are also discussed. The book is organ...