You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the ...
This book provides a clear and thorough introduction to meta-analysis, the process of synthesizing data from a series of separate studies. Meta-analysis has become a critically important tool in fields as diverse as medicine, pharmacology, epidemiology, education, psychology, business, and ecology. Introduction to Meta-Analysis: Outlines the role of meta-analysis in the research process Shows how to compute effects sizes and treatment effects Explains the fixed-effect and random-effects models for synthesizing data Demonstrates how to assess and interpret variation in effect size across studies Clarifies concepts using text and figures, followed by formulas and examples Explains how to avoid...
Healthcare providers, consumers, researchers and policy makers are inundated with unmanageable amounts of information, including evidence from healthcare research. It has become impossible for all to have the time and resources to find, appraise and interpret this evidence and incorporate it into healthcare decisions. Cochrane Reviews respond to this challenge by identifying, appraising and synthesizing research-based evidence and presenting it in a standardized format, published in The Cochrane Library (www.thecochranelibrary.com). The Cochrane Handbook for Systematic Reviews of Interventions contains methodological guidance for the preparation and maintenance of Cochrane intervention revie...
The subject of the book is advanced statistical analyses for quantitative research synthesis (meta-analysis), and selected practical issues relating to research synthesis that are not covered in detail in the many existing introductory books on research synthesis (or meta-analysis). Complex statistical issues are arising more frequently as the primary research that is summarized in quantitative syntheses itself becomes more complex, and as researchers who are conducting meta-analyses become more ambitious in the questions they wish to address. Also as researchers have gained more experience in conducting research syntheses, several key issues have persisted and now appear fundamental to the ...
A practical guide to network meta-analysis with examples and code In the evaluation of healthcare, rigorous methods of quantitative assessment are necessary to establish which interventions are effective and cost-effective. Often a single study will not provide the answers and it is desirable to synthesise evidence from multiple sources, usually randomised controlled trials. This book takes an approach to evidence synthesis that is specifically intended for decision making when there are two or more treatment alternatives being evaluated, and assumes that the purpose of every synthesis is to answer the question "for this pre-identified population of patients, which treatment is 'best'?" A co...
This book provides a comprehensive introduction to performing meta-analysis using the statistical software R. It is intended for quantitative researchers and students in the medical and social sciences who wish to learn how to perform meta-analysis with R. As such, the book introduces the key concepts and models used in meta-analysis. It also includes chapters on the following advanced topics: publication bias and small study effects; missing data; multivariate meta-analysis, network meta-analysis; and meta-analysis of diagnostic studies.
A clear and thorough introduction to meta-analysis, the process of synthesizing data from a series of separate studies The first edition of this text was widely acclaimed for the clarity of the presentation, and quickly established itself as the definitive text in this field. The fully updated second edition includes new and expanded content on avoiding common mistakes in meta-analysis, understanding heterogeneity in effects, publication bias, and more. Several brand-new chapters provide a systematic "how to" approach to performing and reporting a meta-analysis from start to finish. Written by four of the world's foremost authorities on all aspects of meta-analysis, the new edition: Outlines...
This book focuses on performing hands-on meta-analysis using MetaXL, a free add-on to MS Excel. The illustrative examples are taken mainly from medical and health sciences studies, but the generic methods can be used to perform meta-analysis on data from any other discipline. The book adopts a step-by-step approach to perform meta-analyses and interpret the results. Stata codes for meta-analyses are also provided. All popularly used meta-analytic methods and models – such as the fixed effect model, random effects model, inverse variance heterogeneity model, and quality effect model – are used to find the confidence interval for the effect size measure of independent primary studies and t...
Meta-Analysis shows concisely, yet comprehensively, how to apply statistical methods to achieve a literature review of a common research domain. It demonstrates the use of combined tests and measures of effect size to synthesize quantitatively the results of independent studies for both group differences and correlations. Strengths and weaknesses of alternative approaches, as well as of meta-analysis in general, are presented.
Major text including chapters on the following: defining outcome measures; assessing heterogeneity; using fixed effects methods and random effects models for combining study estimates; publication bias.