You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume includes twelve solicited articles which survey the current state of knowledge and some of the open questions on the mathematics of aperiodic order. A number of the articles deal with the sophisticated mathematical ideas that are being developed from physical motivations. Many prominent mathematical aspects of the subject are presented, including the geometry of aperiodic point sets and their diffractive properties, self-affine tilings, the role of $C*$-algebras in tiling theory, and the interconnections between symmetry and aperiodic point sets. Also discussed are the question of pure point diffraction of general model sets, the arithmetic of shelling icosahedral quasicrystals, ...
The purpose of this book is to serve as a tool for researchers and practitioners who apply Lie algebras and Lie groups to solve problems arising in science and engineering. The authors address the problem of expressing a Lie algebra obtained in some arbitrary basis in a more suitable basis in which all essential features of the Lie algebra are directly visible. This includes algorithms accomplishing decomposition into a direct sum, identification of the radical and the Levi decomposition, and the computation of the nilradical and of the Casimir invariants. Examples are given for each algorithm. For low-dimensional Lie algebras this makes it possible to identify the given Lie algebra complete...
MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the ten programs held at MATRIX in 2019 and the two programs held in January 2020: · Topology of Manifolds: Interactions Between High and Low Dimensions · Australian-German Workshop on Differential Geometry in the Large · Aperiodic Order meets Number Theory · Ergodic Theory, Diophantine Approximation and Related Topics · Influencing Public Health Policy with Data-informed Mathematical Models of Infectious Diseases · International ...
The book provides an introduction to all aspects of the physics of quasicrystals. The chapters, each written by an expert in this field, cover quasiperiodic tilings and the modeling of the atomic structure of quasicrystals. The electronic density of states and the calculation of the electronic structure play a key role in this introduction, as does an extensive discussion of the atomic dynamics. The study of defects in quasicrystals by high resolution electron microscopy and the computer simulations of defects and fracture in decorated tilings are important subjects for the application of these aperiodic crystals.
A co-publication of the AMS and Centre de Recherches Mathématiques In this monograph the authors study the well-posedness of boundary value problems of Dirichlet and Neumann type for elliptic systems on the upper half-space with coefficients independent of the transversal variable and with boundary data in fractional Hardy–Sobolev and Besov spaces. The authors use the so-called “first order approach” which uses minimal assumptions on the coefficients and thus allows for complex coefficients and for systems of equations. This self-contained exposition of the first order approach offers new results with detailed proofs in a clear and accessible way and will become a valuable reference for graduate students and researchers working in partial differential equations and harmonic analysis.
Shimura curves are a far-reaching generalization of the classical modular curves. They lie at the crossroads of many areas, including complex analysis, hyperbolic geometry, algebraic geometry, algebra, and arithmetic. This monograph presents Shimura curves from a theoretical and algorithmic perspective. The main topics are Shimura curves defined over the rational number field, the construction of their fundamental domains, and the determination of their complex multiplication points. The study of complex multiplication points in Shimura curves leads to the study of families of binary quadratic forms with algebraic coefficients and to their classification by arithmetic Fuchsian groups. In thi...
Comprising the proceedings of the fall 1995 semester program arranged by The Fields Institute at the U. of Toronto, Ontario, Canada, this volume contains eleven contributions which address ordered aperiodic systems realized either as point sets with the Delone property or as tilings of a Euclidean space. This collection of articles aims to bring into the mainstream of mathematics and mathematical physics this developing field of study integrating algebra, geometry, Fourier analysis, number theory, crystallography, and theoretical physics. Annotation copyrighted by Book News, Inc., Portland, OR
Formulated in 1859, the Riemann Hypothesis is the most celebrated and multifaceted open problem in mathematics. In essence, it states that the primes are distributed as harmoniously as possible--or, equivalently, that the Riemann zeros are located on a single vertical line, called the critical line.
This book pays tribute to two pioneers in the field of Mathematical physics, Jiri Patera and Pavel Winternitz of the CRM. Each has contributed more than forty years to the subject of mathematical physics, particularly to the study of algebraic methods.
The conference promotes the theoretical and methodological development of crystallographic investigations of aperiodic crystals including modulated structures, polytypes, incommensurate misfit or composite crystals and quasi crystals. It also promotes scientific interchange among groups working in the various fields of aperiodic materials. Special emphasis will be given to multidisciplinary aspects of aperiodicity.