You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Felix Klein, one of the great nineteenth-century geometers, rediscovered in mathematics an idea from Eastern philosophy: the heaven of Indra contained a net of pearls, each of which was reflected in its neighbour, so that the whole Universe was mirrored in each pearl. Klein studied infinitely repeated reflections and was led to forms with multiple co-existing symmetries. For a century these ideas barely existed outside the imagination of mathematicians. However in the 1980s the authors embarked on the first computer exploration of Klein's vision, and in doing so found many further extraordinary images. Join the authors on the path from basic mathematical ideas to the simple algorithms that create the delicate fractal filigrees, most of which have never appeared in print before. Beginners can follow the step-by-step instructions for writing programs that generate the images. Others can see how the images relate to ideas at the forefront of research.
In the twentieth century, American mathematicians began to make critical advances in a field previously dominated by Europeans. Harvard’s mathematics department was at the center of these developments. A History in Sum is an inviting account of the pioneers who trailblazed a distinctly American tradition of mathematics—in algebraic geometry and topology, complex analysis, number theory, and a host of esoteric subdisciplines that have rarely been written about outside of journal articles or advanced textbooks. The heady mathematical concepts that emerged, and the men and women who shaped them, are described here in lively, accessible prose. The story begins in 1825, when a precocious sixt...
Oscar Zariski’s work in mathematics permanently altered the foundations of algebraic geometry. The powerful tools he forged from the ideas of modern algebra allowed him to penetrate classical problems with an unaccustomed depth, and brought new rigor to the intuitive proofs of the Italian School. The students he trained at Hopkins, and later at Harvard, are among the foremost mathematicians of our time. While what he called his “real life” is recorded in almost a hundred books and papers, this story of his “unreal life” is based upon Parikh’s interviews with his family, colleagues, and students, and on his own memories from a series of tape-recorded interviews made a few years before his death in 1986. First published in 1991, The Unreal Life of Oscar Zariski was highly successful and widely praised, but has been out of print for many years. Springer is proud to make this book available again, introducing Oscar Zariski to a new generation of mathematicians.
The new edition of this celebrated and long-unavailable book preserves the original book's content and structure and its unrivalled presentation of a universal method for the resolution of a class of singularities in algebraic geometry.
Although not as publicly well-known as the Nobel Prizes, the Fields Medal shares the same intellectual standing and is the equivalent award in the field of mathematics. This volume presents a selected list of 22 Fields Medallists and their contributions to give a highly interesting and varied bird's eye view of mathematics over the past 60 years. The contributions relate directly to the work for which the Medals were awarded or to the medallists' more current interests. In most cases, they are preceded by the introductory speech given by another leading mathematician during the prize ceremony, a photograph and up-to-date biographical notice.
Pattern theory is a distinctive approach to the analysis of all forms of real-world signals. At its core is the design of a large variety of probabilistic models whose samples reproduce the look and feel of the real signals, their patterns, and their variability. Bayesian statistical inference then allows you to apply these models in the analysis o
This volume is composed of six contributions derived from the lectures given during the UIMP-RSME Lluis Santalo Summer School on ``Recent Advances in Real Complexity and Computation'', held July 16-20, 2012, in Santander, Spain. The goal of this Summer School was to present some of the recent advances on Smale's 17th Problem: ``Can a zero of $n$ complex polynomial equations in $n$ unknowns be found approximately, on the average, in polynomial time with a uniform algorithm?'' These papers cover several aspects of this problem: from numerical to symbolic methods in polynomial equation solving, computational complexity aspects (both worse and average cases and both upper and lower complexity bounds) as well as aspects of the underlying geometry of the problem. Some of the contributions also deal with either real or multiple solutions solving.
Algebra, as a subdiscipline of mathematics, arguably has a history going back some 4000 years to ancient Mesopotamia. The history, however, of what is recognized today as high school algebra is much shorter, extending back to the sixteenth century, while the history of what practicing mathematicians call "modern algebra" is even shorter still. The present volume provides a glimpse into the complicated and often convoluted history of this latter conception of algebra by juxtaposing twelve episodes in the evolution of modern algebra from the early nineteenth-century work of Charles Babbage on functional equations to Alexandre Grothendieck's mid-twentieth-century metaphor of a ``rising sea'' in...
The review group set up by the Archbishops' Council to review clergy stipends, looks at questions of principle before considering whether its proposals could be afforded by the Church. This report contains a "hierarchy of aspirations" for improved stipends for clergy.
Provides an explanation of what made Alexandre Grothendieck the mathematician that he was. Thirteen articles written by people who knew him personally - some who even studied or collaborated with him over a period of many years - portray Grothendieck at work, explaining the nature of his thought through descriptions of his discoveries and contributions to various subjects, and with impressions, memories, anecdotes, and some biographical elements.