You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum error correction, and other related topics.
"Summarizes research and progress in understanding the fundamental molecular properties of polycarbonates by covering history, theory, modeling, and spectroscopy. Offers the first comprehensive survey of polycarbonates in over 30 years."
Wavelet analysis and its applications have been one of the fastest growing research areas in the past several years. Wavelet theory has been employed in numerous fields and applications, such as signal and image processing, communication systems, biomedical imaging, radar, air acoustics, and many other areas. Active media technology is concerned with the development of autonomous computational or physical entities capable of perceiving, reasoning, adapting, learning, cooperating, and delegating in a dynamic environment.This book captures the essence of the current state of the art in wavelet analysis and active media technology. It includes nine invited papers by distinguished researchers: P Zhang, T D Bui and C Y Suen from Concordia University, Canada; N A Strelkov and V L Dol'nikov from Yaroslavl State University, Russia; Chin-Chen Chang and Ching-Yun Chang from Taiwan; S S Pandey from R D University, India; and I L Bloshanskii from Moscow State Regional University, Russia.The proceedings have been selected for coverage in:
Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with in creasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equa tion and obtains a closed form analytic answer. It is these Computer Algebra systems, their capabilities, and applications which are the subject of the papers in this volume.
This multi-author reference work provides a unique introduction to the currently emerging, highly interdisciplinary field of those transport processes that cannot be described by using standard methods of statistical mechanics. It comprehensively summarizes topics ranging from mathematical foundations of anomalous dynamics to the most recent experiments in this field. In so doing, this monograph extracts and emphasizes common principles and methods from many different disciplines while providing up-to-date coverage of this new field of research, considering such diverse applications as plasma physics, glassy material, cell science, and socio-economic aspects. The book will be of interest to both theorists and experimentalists in nonlinear dynamics, statistical physics and stochastic processes. It also forms an ideal starting point for graduate students moving into this area. 18 chapters written by internationally recognized experts in this field provide in-depth introductions to fundamental aspects of anomalous transport.
Proceedings of the NATO Advanced Study Institute on Propagation of Correlations in Constrained Systems, Cargèse, Corsica, France, July 2-14, 1990
Military conflicts, particularly land combat, possess the characteristics of complex adaptive systems: combat forces are composed of a large number of nonlinearly interacting parts and are organized in a dynamic command-and-control network; local action, which often appears disordered, self-organizes into long-range order; military conflicts, by their nature, proceed far from equilibrium; military forces adapt to a changing combat environment; and there is no master ?voice? that dictates the actions of every soldier (i.e., battlefield action is decentralized). Nonetheless, most modern ?state of the art? military simulations ignore the self-organizing properties of combat.This book summarizes...