You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Life Science studies in space were initially driven by the need to explore how man could survive spaceflight conditions; the effects of being launched un der high accelerations, exposed to weightlessness and radiation for different periods of time, and returned to Earth in safety. In order to substantiate the detailed knowledge of potentially adverse effects, many model experiments were launched using organisms which ranged from bacteria, plants, inverte brates, rodents and primates through to man. Although no immediate life threatening effects were found, these experiments can be considered today as the precursors to life science research in space. Many unexplained effects on these life for...
Explores how these conflicting scenarios could be reconciled; how can we shape a more sustainable energy system from the existing one; and possible technological progress and innovations to enable a brighter future. Addresses the reality that there exists no consensus on the extent to which innovations can really contribute to reconciling ever-growing energy consumption, availability of resources and the environment, and the structural demands on any energy system. Offers and explains a four-point strategy: Energy should according to its importance regain a top priority in the political arena; higly targeted subsidies should be given for a limited amount of time to speed up the market introduction of energy-efficient and regenerative techniques in analogy to the ‚Dutch model‘; Negotiated agreements and unilateral self-commitments can subsequently ensure further market diffusion of sustainable energy innovations.; the basic research in energy should not be diminished but intensified instead
None
This volume is based on the proceedings of an Advanced Study Institute (ASI) sponsored by the North Atlantic Treaty Organization (NATO) held October 1987 in Corfu, Greece. The Institute received financial support from the National Aeronautics and Space Administration, U.S.A. Armed Forces Radiobiology Research Institute, U.S.A. Department of Energy, U.S.A. Deutsche Forschungs-und Versuchanstalt fur Luft und Raumfahrt e.v., Kaln, Germany The advent of the shuttle era is providing fresh impetus for large space ventures such as communication centers, solar power stations, astronomical observatories, orbiting factories, and space based radar. Such ventures will rely heavily on an extensive and pr...
Space missions subject human beings or any other target of a spacecraft to a radiation environment of an intensity and composition not available on earth. Whereas for missions in low earth orbit (LEO), such as those using the Space Shuttle or Space Station scenario, radiation exposure guidelines have been developed and have been adopted by spacefaring agencies, for exploratory class missions that will take the space travellers outside the protective confines of the geomagnetic field sufficient guidelines for radiation protection are still outstanding. For a piloted Mars mission, the whole concept of radiation protection needs to be reconsidered. Since there is an increasing interest ci many ...
Radiation is the one agent among all environmental factors which may damage biological systems that is not only easily quantifiable but can also be measured with unsurpassed resolution. Its primary effects on atoms and molecules are well understood, and the secondary processes can be followed by sophisticated experimental techniques. The quantum nature of interactions and the importance of stochastic variations call for an exact mathematical description. This task is by no means simple, and presents a challenge both to the experimentalist and to the theoretician. It is hoped that a generally acceptable formalism will help to quantify radiation responses, both in radiation protection and radiation therapy, and make it possible to move from a purely empirical approach with all its fallacies to real understanding.
None