You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Soviet citizens can buy Monastyrsky's biography of Riemann for eleven kopeks. This translated edition will cost considerably more, but it is still good value for the money. And we get Monastyrsky's monograph on topological methods in the bargain. It was a good idea of Birkhiiuser Boston to publish the two translations in one volume. The economics of publishing in a capitalist country make it impossible for us to produce the small cheap paperback booklets, low in quality of paper and high in quality of scholarship, at which the Soviet publishing industry excels. Monastyrsky's two booklets are out standing examples of the genre. By putting them together, Birkhiiuser has enabled them to fit int...
The significantly expanded second edition of this book combines a fascinating account of the life and work of Bernhard Riemann with a lucid discussion of current interaction between topology and physics. The author, a distinguished mathematical physicist, takes into account his own research at the Riemann archives of Göttingen University and developments over the last decade that connect Riemann with numerous significant ideas and methods reflected throughout contemporary mathematics and physics. Special attention is paid in part one to results on the Riemann–Hilbert problem and, in part two, to discoveries in field theory and condensed matter.
Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.
One of the most enduring elements in theoretical physics has been group theory. GROUP 24: Physical and Mathematical Aspects of Symmetries provides an important selection of informative articles describing recent advances in the field. The applications of group theory presented in this book deal not only with the traditional fields of physics, but also include such disciplines as chemistry and biology. Awarded the Wigner Medal and the Weyl Prize, respectively, H.J. Lipkin and E. Frenkel begin the volume with their contributions. Plenary session contributions are represented by 18 longer articles, followed by nearly 200 shorter articles. The book also presents coherent states, wavelets, and applications and quantum group theory and integrable systems in two separate sections. As a record of an international meeting devoted to the physical and mathematical aspects of group theory, GROUP 24: Physical and Mathematical Aspects of Symmetries constitutes an essential reference for all researchers interested in various current developments related to the important concept of symmetry.
The papers in this volume cover a wide variety of topics in differential geometry, general relativity, and partial differential equations. In addition, there are several articles dealing with various aspects of Lie groups and mathematics physics. Taken together, the articles provide the reader with a panorama of activity in general relativity and partial differential equations, drawn by a number of leading figures in the field. The companion volume (Contemporary Mathematics, Volume 553) is devoted to function theory and optimization.
This is a book on interdisciplinary topics of the Mathematical and Biological Sciences. The treatment is both pedagogical and advanced in order to motivate research students as well as to fulfill the requirements of professional practitioners. There are comprehensive reviews written by senior experts on the important problems of growth and agglomeration in biology, on the algebraic modelling of the genetic code and on multi-step biochemical pathways.There are new results on the state of the art research in the pattern recognition of probability distribution of amino acids, on somitogenesis through reaction-diffusion models, on the mathematical modelling of infectious diseases, on the biophysical modelling of physiological disorders, on the sensitive analysis of parameters of malaria models, on the stability and hopf bifurcation of ecological and epidemiological models, on the viral infection of bee colonies and on the structure and motion of proteins. All these contributions are also strongly recommended to professionals from other scientific areas aiming to work on these interdisciplinary fields.
This book presents William Clifford’s English translation of Bernhard Riemann’s classic text together with detailed mathematical, historical and philosophical commentary. The basic concepts and ideas, as well as their mathematical background, are provided, putting Riemann’s reasoning into the more general and systematic perspective achieved by later mathematicians and physicists (including Helmholtz, Ricci, Weyl, and Einstein) on the basis of his seminal ideas. Following a historical introduction that positions Riemann’s work in the context of his times, the history of the concept of space in philosophy, physics and mathematics is systematically presented. A subsequent chapter on the reception and influence of the text accompanies the reader from Riemann’s times to contemporary research. Not only mathematicians and historians of the mathematical sciences, but also readers from other disciplines or those with an interest in physics or philosophy will find this work both appealing and insightful.
What is Time? Assuming no prior specialized knowledge by the reader, the book raises specific, hitherto overlooked questions about how time works, such as how and why anyone can be made to be, at the very same instant, simultaneous with events that are actually days apart. It examines abiding issues in the physics of time or at its periphery which still elude a full explanation ― such as delayed choice experiments, the brain's perception of time during saccadic masking, and more ― and suggests that these phenomena can only exist because they ultimately obey applicable mathematics, thereby agreeing with a modern view that the universe and everything within it, including the mind, are ultimately mathematical structures. It delves into how a number of conundrums, such as the weak Anthropic Principle, could be resolved, and how such resolutions could be tested experimentally. All its various threads converge towards a same new vision of the ultimate essence of time, seen as a side effect from a deeper reality.
"Choreographing Relations" undertakes the experiment of a conceptual site development of contemporary choreography by means of practical philosophy. Guided by the radically empiricist question "What Can Choreography Do?" the book investigates the performances of Antonia Baehr, Juan Dominguez, Xavier Le Roy, and Eszter Salamon, and the philosophical works of Gilles Deleuze and Félix Guattari. It establishes a relation between these practitioners as an encounter in method, and develops method as a singular, material and experimental practice. In view of these singular methods and the participatory relations to which they give rise, Choreographing Relations offers a prolific inventory of arepresentational procedures that qualitatively transformed choreography and philosophy at the turn of the twentieth century.