You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Among the key problems in modern field theory are the formulation of chiral group theories on the lattice and the quantitative understanding of the quark confinement mechanism. The two topics are closely related by the fact that the chiral nature of the fermions as well as the confinement force are largely topological in origin. Recent advances in this field are here reviewed by some of the world's experts.
The SEWM2002 workshop, like the ones before, brought together theoretical physicists working on thermal field theory and, more generally, on (resummation) techniques for deriving effective actions based on QCD and the electroweak standard model of elementary particle physics, but describing nonstandard situations. The focus was on the temperature/chemical potential phase diagram of QCD, considered both analytically and with lattice gauge theory, equilibrium and nonequilibrium thermo field theory, and on heavy ion physics. Other related topics were “small x physics” in QCD, electroweak baryogenesis, inflation, and dark energy in the early universe.
H. Dorn, D. Lüst, G. Weight (eds.) Theory of Elementary Particles Following a long-standing tradition, the 1997 Symposium Ahrenshoop brought together a remarkable set of leading scientists in both string theory and lattice theory. The contributions in this volume represent a big part of the most active research in these rapidly advancing fields. Experts from Europe, the USA, Russia, India and Japan discuss their recent results on strings, branes, M-theory, lattice gauge theory and non-perturbative QCD. A major issue is the comparison of non-perturbative results obtained in (supersymmetric) field theories or superstring theory with results from lattice models. An invaluable source of topical information for every scientist working in elementary particle theory!
This volume summarizes our contemporary understanding of the deconfinement transition in QCD at finite temperature and chemical potential. Questions as to whether a quark-gluon plasma exists in the interior of dense astrophysical objects or which bound-state signals have to be studied in order to unambiguously detect the QCD phase transition(s) in future heavy-ion collision programmes at RHIC and LHC are addressed. Progress in answering these questions requires a fusion of lattice QCD with other nonperturbative approaches and low-energy effective models for QCD. Experts in these fields present in the book their methods and their results in understanding the deconfinement phenomenon.
This book is dedicated to the memory of Michael Marinov, the theorist who, together with Felix Berezin, introduced the classical description of spin by anticommuting Grassmann variables. It contains original papers and reviews by physicists and mathematicians written specifically for the book. These articles reflect the current status and recent developments in the areas of Marinov's research: quantum tunneling, quantization of constrained systems, supersymmetry, and others. The personal recollections included portray the human face of M Marinov, a person of great knowledge and integrity.
None
None