You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Mathematics for Biological Scientists is a new undergraduate textbook which covers the mathematics necessary for biology students to understand, interpret and discuss biological questions. The book's twelve chapters are organized into four themes. The first theme covers the basic concepts of mathematics in biology, discussing the mathematics used in biological quantities, processes and structures. The second theme, calculus, extends the language of mathematics to describe change. The third theme is probability and statistics, where the uncertainty and variation encountered in real biological data is described. The fourth theme is explored briefly in the final chapter of the book, which is to show how the 'tools' developed in the first few chapters are used within biology to develop models of biological processes. Mathematics for Biological Scientists fully integrates mathematics and biology with the use of colour illustrations and photographs to provide an engaging and informative approach to the subject of mathematics and statistics within biological science.
This new book provides a theoretical and practical guide to analysis of variance (ANOVA) for those who have not had a formal course in this technique, but need to use this analysis as part of their research. From their experience in teaching this material and applying it to research problems, the authors have created a summary of the statistical theory underlying ANOVA, together with important issues, guidance, practical methods, references, and hints about using statistical software. These have been organized so that the student can learn the logic of the analytical techniques but also use the book as a reference guide to experimental designs, realizing along the way what pitfalls are likely to be encountered.
This new book provides a theoretical and practical guide to analysis of variance (ANOVA) for those who have not had a formal course in this technique, but need to use this analysis as part of their research. From their experience in teaching this material and applying it to research problems, the authors have created a summary of the statistical theory underlying ANOVA, together with important issues, guidance, practical methods, references, and hints about using statistical software. These have been organized so that the student can learn the logic of the analytical techniques but also use the book as a reference guide to experimental designs, realizing along the way what pitfalls are likely to be encountered.