Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Arithmetic, Geometry, and Coding Theory
  • Language: en
  • Pages: 301

Arithmetic, Geometry, and Coding Theory

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.

Arithmetic, Geometry, Cryptography and Coding Theory
  • Language: en
  • Pages: 303

Arithmetic, Geometry, Cryptography and Coding Theory

This volume contains the proceedings of the 17th International Conference on Arithmetic, Geometry, Cryptography and Coding Theory (AGC2T-17), held from June 10–14, 2019, at the Centre International de Rencontres Mathématiques in Marseille, France. The conference was dedicated to the memory of Gilles Lachaud, one of the founding fathers of the AGC2T series. Since the first meeting in 1987 the biennial AGC2T meetings have brought together the leading experts on arithmetic and algebraic geometry, and the connections to coding theory, cryptography, and algorithmic complexity. This volume highlights important new developments in the field.

Algorithmic Arithmetic, Geometry, and Coding Theory
  • Language: en
  • Pages: 316

Algorithmic Arithmetic, Geometry, and Coding Theory

This volume contains the proceedings of the 14th International Conference on Arithmetic, Geometry, Cryptography, and Coding Theory (AGCT), held June 3-7, 2013, at CIRM, Marseille, France. These international conferences, held every two years, have been a major event in the area of algorithmic and applied arithmetic geometry for more than 20 years. This volume contains 13 original research articles covering geometric error correcting codes, and algorithmic and explicit arithmetic geometry of curves and higher dimensional varieties. Tools used in these articles include classical algebraic geometry of curves, varieties and Jacobians, Suslin homology, Monsky-Washnitzer cohomology, and -functions of modular forms.

Foliations, Geometry, and Topology
  • Language: en
  • Pages: 247

Foliations, Geometry, and Topology

Presents the proceedings of the conference on Foliations, Geometry, and Topology, held August 6-10, 2007, in Rio de Janeiro, Brazil, in honor of the 70th birthday of Paul Schweitzer. The papers focus on the theory of foliations and related areas such as dynamical systems, group actions on low dimensional manifolds, and geometry of hypersurfaces.

Attractors Under Autonomous and Non-autonomous Perturbations
  • Language: en
  • Pages: 259

Attractors Under Autonomous and Non-autonomous Perturbations

This book provides a comprehensive study of how attractors behave under perturbations for both autonomous and non-autonomous problems. Furthermore, the forward asymptotics of non-autonomous dynamical systems is presented here for the first time in a unified manner. When modelling real world phenomena imprecisions are unavoidable. On the other hand, it is paramount that mathematical models reflect the modelled phenomenon, in spite of unimportant neglectable influences discounted by simplifications, small errors introduced by empirical laws or measurements, among others. The authors deal with this issue by investigating the permanence of dynamical structures and continuity properties of the at...

Finite Fields with Applications to Coding Theory, Cryptography and Related Areas
  • Language: en
  • Pages: 345

Finite Fields with Applications to Coding Theory, Cryptography and Related Areas

The Sixth International Conference on Finite Fields and Applications, Fq6, held in the city of Oaxaca, Mexico, from May 21-25, 2001, continued a series of biennial international conferences on finite fields. This volume documents the steadily increasing interest in this topic. Finite fields are an important tool in discrete mathematics and its applications cover algebraic geometry, coding theory, cryptology, design theory, finite geometries, and scientific computation, among others. An important feature is the interplay between theory and applications which has led to many new perspectives in research on finite fields and other areas. This interplay has been emphasized in this series of conferences and certainly was reflected in Fq6. This volume offers up-to-date original research papers by leading experts in the area.

Ordinary Differential Operators
  • Language: en
  • Pages: 269

Ordinary Differential Operators

In 1910 Herman Weyl published one of the most widely quoted papers of the 20th century in Analysis, which initiated the study of singular Sturm-Liouville problems. The work on the foundations of Quantum Mechanics in the 1920s and 1930s, including the proof of the spectral theorem for unbounded self-adjoint operators in Hilbert space by von Neumann and Stone, provided some of the motivation for the study of differential operators in Hilbert space with particular emphasis on self-adjoint operators and their spectrum. Since then the topic developed in several directions and many results and applications have been obtained. In this monograph the authors summarize some of these directions discuss...

Hopf Algebras and Root Systems
  • Language: en
  • Pages: 606

Hopf Algebras and Root Systems

This book is an introduction to Hopf algebras in braided monoidal categories with applications to Hopf algebras in the usual sense. The main goal of the book is to present from scratch and with complete proofs the theory of Nichols algebras (or quantum symmetric algebras) and the surprising relationship between Nichols algebras and generalized root systems. In general, Nichols algebras are not classified by Cartan graphs and their root systems. However, extending partial results in the literature, the authors were able to associate a Cartan graph to a large class of Nichols algebras. This allows them to determine the structure of right coideal subalgebras of Nichols systems which generalize ...

The Classification of the Finite Simple Groups, Number 9
  • Language: en
  • Pages: 520

The Classification of the Finite Simple Groups, Number 9

This book is the ninth volume in a series whose goal is to furnish a careful and largely self-contained proof of the classification theorem for the finite simple groups. Having completed the classification of the simple groups of odd type as well as the classification of the simple groups of generic even type (modulo uniqueness theorems to appear later), the current volume begins the classification of the finite simple groups of special even type. The principal result of this volume is a classification of the groups of bicharacteristic type, i.e., of both even type and of $p$-type for a suitable odd prime $p$. It is here that the largest sporadic groups emerge, namely the Monster, the Baby Monster, the largest Conway group, and the three Fischer groups, along with six finite groups of Lie type over small fields, several of which play a major role as subgroups or sections of these sporadic groups.

Perverse Sheaves and Applications to Representation Theory
  • Language: en
  • Pages: 562

Perverse Sheaves and Applications to Representation Theory

Since its inception around 1980, the theory of perverse sheaves has been a vital tool of fundamental importance in geometric representation theory. This book, which aims to make this theory accessible to students and researchers, is divided into two parts. The first six chapters give a comprehensive account of constructible and perverse sheaves on complex algebraic varieties, including such topics as Artin's vanishing theorem, smooth descent, and the nearby cycles functor. This part of the book also has a chapter on the equivariant derived category, and brief surveys of side topics including étale and ℓ-adic sheaves, D-modules, and algebraic stacks. The last four chapters of the book show...